Get Answers to all your Questions

header-bg qa

A bag contains 3 white and 2 red balls, another bag contains 4 white and 3 red balls. One ball is drawn at random from each bag. Find the probability that the balls drawn are one white and one red.

 

 

 

 
 
 
 
 

Answers (1)

B1: 3 white and 2 Red,  Total Balls = 5       B2: 4 white & 3 Red ball, Total Balls = 7
P( one white and one red)
P\left ( 1w \right )= \frac{3}{5}                      P\left ( 1w \right )= \frac{4}{7}
P\left ( 1R \right )= \frac{2}{5}                     P\left ( 1R \right )= \frac{3}{7}
P\left ( 1w+1R \right )\Rightarrow P\left ( 1 white \right )\ast P\left ( 1 Red \right )+P\left ( 1 Red \right )\ast P\left ( 1w \right )
                                       B1                      B2                         B1                 B2   
                                   = \frac{3}{5}\times \frac{3}{7}+\frac{2}{5}\times \frac{4}{7}
                                   = \frac{9}{35}+\frac{8}{35}
                                  \Rightarrow \frac{17}{35}

Posted by

Ravindra Pindel

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads