Get Answers to all your Questions

header-bg qa

(a) Prove that an ideal capacitor in an ac circuit does not dissipate power.
(b) An inductor of 200 mH, capacitor of 400 \mu F and a resistor of 10 \Omega are connected
in series to ac source of 50 V of variable frequency. Calculate the
(i) angular frequency at which maximum power dissipation occurs in the
circuit and the corresponding value of the effective current, and
(ii) value of Q-factor in the circuit.

 

 

 

 
 
 
 
 

Answers (1)

a) for a capacitor circuit current leads voltage by an angle \frac{\pi }{2}
Let voltage

V= V_{m}\sin wt
     current

I= I_{m}\sin \left ( wt+\frac{\pi }{2} \right )
Average Power

p= \frac{\int_{0}^{T}V_{m}\sin wt\, I_{m}\sin \left ( wt+\frac{\pi }{2} \right )dt}{\int_{0}^{T}dt}
     = \frac{\frac{1}{2}V_{m}I_{m}\int_{0}^{T}\sin 2wt\, dt}{\int_{0}^{T}dt}= 0
b)
i) Maximum power is obtained at resonance.
At resonance
 X_{L}= X_{C}
wL= \frac{1}{wC}
Angular frequency w= \frac{1}{\sqrt{LC}}
                             = \frac{1}{\sqrt{200\times 10^{-3}\times 400\times 10^{-6}}}
                            =\frac{10^{3}}{\sqrt{80}}
                            =0\cdot 111\times 10^{3}Hz
                           =111\, rad/sc
I_{m}=\frac{V_{m}}{Z}= \frac{V_{m}}{R}= \frac{50\sqrt{2}}{10}= 5\sqrt{2}\, A
ii) Q-factor
   Q= \frac{1}{R}\sqrt{\frac{L}{C}}
       = \frac{1}{10}\sqrt{\frac{200\times 10^{-3}}{400\times 10^{-6}}}
     = \frac{1}{10}\sqrt{500}
    =\sqrt{5}
       

Posted by

Safeer PP

View full answer