Get Answers to all your Questions

header-bg qa

Find the point on the circle x^{2}+y^{2}= 80 which is nearest to the point
(1, 2).

 

 

 

 
 
 
 
 

Answers (1)

Eqn of the circle is x^{2}+y^{2}= 80  and center is (0,0)

Let P(x,y) be the nearest point to A(1,2) which lies inside the circle
OA= \sqrt{5}, OP= \sqrt{80}= 4\sqrt{5}
\therefore AP= OP-OA= 4\sqrt{5}-\sqrt{5}
                                      = 3\sqrt{5}
OA:AP= \sqrt{5}:3\sqrt{5}
                   = 1:3
The line containing the points (0,0) and (1,2) are  y = 2x
Let the point on the circle be (h,k)
h = 2k, the point satisfies the equations
h^{2}+k^{2}= 80  the point lies on the circle
\Rightarrow \left ( 2k \right )^{2}+k^{2}= 80
\Rightarrow \left ( 5k^{2} \right )= 80
\Rightarrow k^{2}= 16
\Rightarrow k= 4,-4
h = 2k
= 2\times 4= 8\: and\: 2\times -4= -8
\therefore The points that are  possible are (4,8) and (-4,-8)

\therefore x= 4\: \: y= 8  is the nearest point on the circle.

Posted by

Ravindra Pindel

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads