Get Answers to all your Questions

header-bg qa
Filter By

All Questions

  1.  -5
  2. 6
  3. 1
  4. -3

Volume of parallelopiped, V = \left ( \vec a \times \vec b \right ). \vec c

Here \vec a = -12i+\lambda k

\vec b = 3j - k

and, \vec c = 2i+j-15k

\vec a \times \vec b = \begin{bmatrix} i & j & k \\ -12 & 0 & \lambda \\ 0& 3 & -1 \end{bmatrix}

\Rightarrow \vec a \times \vec b = -3\lambda i -12j -36k

V = \left ( -3\lambda i -12j -36k \right ).(2i+j-15k) = -6\lambda -12 +540 = -6\lambda +528

Given that V is 546, put it in the above equation.

546 = -6\lambda +528

\Rightarrow \lambda =-3

Option (4) is correct

View Full Answer(1)
Posted by

Abhishek Sahu

Let \vec{P} is the p.v of the orthocentre and \vec{g} is the p.v of the centroid of the triangle ABC, where circumcentre is the origin. If \vec{P}= K\vec{g}\: then \: K

  • Option 1)

    3

  • Option 2)

    2

  • Option 3)

    \frac{1}{3}

  • Option 4)

    \frac{2}{3}

 

Use the concept of

Position vector -

Let O be a fixed origin, then position vector of P is \overrightarrow{OP}

- wherein

 

 

Centroid is intersection is \frac{x_{1}+x_{2}+x_{3}}{3} , \frac{y_{1}+y_{2}+y_{3}}{3}

orthocentre: intersection of altitudes.

so that in a triangle ABC the orthocentre H, centroid G and circumcentre M are collinear ang G divides HM internally in the ration 2:1

\therefore g=\frac{2\times M+1\times P}{3}

\Rightarrow p=3g

\therefore k=3                 \left [ \because M=\left ( 0,0,0 \right ) \right ]


Option 1)

3

Correct option

Option 2)

2

Incorrect option

Option 3)

\frac{1}{3}

Incorrect option

Option 4)

\frac{2}{3}

Incorrect option

View Full Answer(1)
Posted by

Vakul

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

The points with position vectors

\vec{3i}-\vec{4j}-\vec{4k}, \vec{2i}-\vec{j}+\vec{k}\: and\: \vec{i}-\vec{3j}-\vec{5k}

  • Option 1)

    An Equilateral Triangle

  • Option 2)

    An Isosceles Triangle

  • Option 3)

    A Right Angle Triangle

  • Option 4)

    None of these

 

As we learnt

Scalar Product of two vectors -

\vec{a}.\vec{b}> 0 \:an\: acute\: angle

\vec{a}.\vec{b}< 0 \:an\: obtuse\: angle

\vec{a}.\vec{b}= 0 \:a\:right\: angle

- wherein

\Theta  is the angle between the vectors \vec{a}\:and\:\vec{b}

 

 \vec{A}=3i-4j-4k

\vec{B}=2i-j+k

\vec{C}=i-3j-5k

\underset{AB}{\rightarrow}= -i+3j+5k

\underset{AC}{\rightarrow}= -2i+j-k

\underset{AB}{\rightarrow}.\underset{AC}{\rightarrow}=2+3-5=0

So that it is right angle triangle


Option 1)

An Equilateral Triangle

Incorrect option

Option 2)

An Isosceles Triangle

Incorrect option

Option 3)

A Right Angle Triangle

Correct option

Option 4)

None of these

Incorrect option

View Full Answer(1)
Posted by

Plabita

If \left | \vec{a} \right |=\left | \vec{b} \right |, then (\vec{a}+\vec{b}).(\vec{a}-\vec{b}) \:is

  • Option 1)

    Positive

  • Option 2)

    Negative

  • Option 3)

    Zero

  • Option 4)

    None

 

As we learnt

Scalar Product of two vectors -

\vec{a}.\vec{b}> 0 \:an\: acute\: angle

\vec{a}.\vec{b}< 0 \:an\: obtuse\: angle

\vec{a}.\vec{b}= 0 \:a\:right\: angle

- wherein

\Theta  is the angle between the vectors \vec{a}\:and\:\vec{b}

 

 \left | \vec{a} \right |=\left | \vec{b} \right |

\left ( \vec{a}+\vec{b} \right ).\left ( \vec{a}-\vec{b} \right )=\vec{a}.\vec{a}-\vec{a}\vec{b}+\vec{b}.\vec{a}-\vec{b}.\vec{b}

\left | \vec{a} \right |^{2}-\left | \vec{b} \right |^{2}          \left [ \because \left | a \right | \right=\left | b \right | ]

=  0

 


Option 1)

Positive

Incorrect Option

Option 2)

Negative

Incorrect Option

Option 3)

Zero

Correct Option

Option 4)

None

Incorrect Option

View Full Answer(1)
Posted by

Aadil

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

If vector 2\vec{i}+3\vec{j}-2\vec{k} and \vec{i}+\vec{2j}+\vec{k} represents the adjacent sides of any parallelogram then the lenght of diagonal of parallelogram are

  • Option 1)

    \sqrt{35},\sqrt{35}

  • Option 2)

    \sqrt{35}, \sqrt{11}

  • Option 3)

    \sqrt{25},\sqrt{11}

  • Option 4)

    None of these

 

 

Magnitude of a Vector -

The length of the directed line segment \overrightarrow{AB} is called its magnitude.

- wherein

It is denoted by \mid \overrightarrow{AB\mid }

 

 Diagonal  = 2i+3j-2k+i+2j+k

\vec{d}=3i+5j-k

\left | \vec{d} \right |=\sqrt{3^{2}+5^{2}+1^{2}}

=\sqrt{9+25+1}

=\sqrt{35}

Similarly 

\vec{d}=i+j-3k

\left | \vec{d} \right |=\sqrt{1+1+9}

=\sqrt{11}


Option 1)

\sqrt{35},\sqrt{35}

Incorrect Option

Option 2)

\sqrt{35}, \sqrt{11}

Correct option

Option 3)

\sqrt{25},\sqrt{11}

Incorrect Option

Option 4)

None of these

Incorrect Option

View Full Answer(1)
Posted by

divya.saini

If vector \vec{a}+\vec{b} is perpendicular to  \vec{b} and \vec{2b}+\vec{a} is perpendicular to \vec{a}, then

  • Option 1)

    \left | \vec{a} \right |=\sqrt{2}\left | \vec{b} \right |

  • Option 2)

    \left | \vec{a} \right |={2}\left | \vec{b} \right |

  • Option 3)

    \left | \vec{b} \right |=\sqrt{2}\left | \vec{a} \right |

  • Option 4)

    \left | \vec{a} \right |=\left | \vec{b} \right |

 

Use concept ID

Scalar Product of two vectors -

\vec{a}.\vec{b}> 0 \:an\: acute\: angle

\vec{a}.\vec{b}< 0 \:an\: obtuse\: angle

\vec{a}.\vec{b}= 0 \:a\:right\: angle

- wherein

\Theta  is the angle between the vectors \vec{a}\:and\:\vec{b}

 

 \left ( \vec{a} \right+\vec{b} ).\vec{b}=0 \Rightarrow \vec{a}.\vec{b}+\vec{b}.\vec{b}=0

and   \left ( 2\vec{b}+\vec{a} \right).\vec{a}=0\Rightarrow 2\vec{b}.\vec{a}+\vec{a}.\vec{a}=0

\therefore \vec{a}.\vec{b}+\left | b \right |^{2}=2\vec{a}.\vec{b}+\left | a \right |^{2}

\left | \vec{b} \right |^{2}-\left | \vec{a} \right |^{2}=\vec{a}.\vec{b}

\therefore \left | b \right |^{2}-\left | a \right |^{2}+\left | b \right |^{2}=0

\left | a \right |^{2}=2\left | b \right |^{2}

\left | \vec{a} \right |=\sqrt{2}\left | \vec{b} \right |

 

 


Option 1)

\left | \vec{a} \right |=\sqrt{2}\left | \vec{b} \right |

Correct option

Option 2)

\left | \vec{a} \right |={2}\left | \vec{b} \right |

Incorrect option

Option 3)

\left | \vec{b} \right |=\sqrt{2}\left | \vec{a} \right |

Incorrect option

Option 4)

\left | \vec{a} \right |=\left | \vec{b} \right |

Incorrect option

View Full Answer(1)
Posted by

prateek

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


If the vector \vec{b} is collinear with the vector \vec{a} =(2\sqrt{2},-1,4) \:and \:\left | \vec{b} \right |=10, \:then

  • Option 1)

    \vec{a}+\vec{b}=0

  • Option 2)

    \vec{a}+\vec{2b}=0

  • Option 3)

    \vec{2a}\ ^+_-\ \vec{b}=0

  • Option 4)

    None

 

Use the concept

Magnitude of a Vector -

The length of the directed line segment \overrightarrow{AB} is called its magnitude.

- wherein

It is denoted by \mid \overrightarrow{AB\mid }

 

 given that 

\vec{b}=\lambda \left ( 2\sqrt{2}i-j+4k \right )

\left | \vec{b} \right |^{2}=8\lambda ^{2}+\lambda ^{2}+16\lambda ^{2}=25\lambda ^{2}

=\frac{100}{25}=\lambda ^{2}=4

\therefore \lambda =\pm 2

\vec{b}=4\sqrt{2}i-2j+8k

or 

\vec{b}= -2\sqrt{2}i+2i-8k

\vec{b}= \pm \underset{2a}{\rightarrow}

\therefore \vec{b}\pm 2\vec{a}=0


Option 1)

\vec{a}+\vec{b}=0

Incorrect option

Option 2)

\vec{a}+\vec{2b}=0

Incorrect option

Option 3)

\vec{2a}\ ^+_-\ \vec{b}=0

Correct option

Option 4)

None

Incorrect option

View Full Answer(1)
Posted by

prateek

If position vectors of A, B, C, D are respectively \vec{2i}+\vec{3j}+\vec{5k}, \vec{i}+\vec{2j}+\vec{3k}, -\vec{5i}+\vec{4j}-\vec{2k} and \vec{i}+\vec{10j}+\vec{10k}, then

  • Option 1)

    AB\parallel CD

  • Option 2)

    DC\parallel AD

  • Option 3)

    A,B,C are collinear

  • Option 4)

    B,C,D are collinear

 

As we learnt

Position vector -

Let O be a fixed origin, then position vector of P is \overrightarrow{OP}

- wherein

 

 Since \underset{AB}{\rightarrow}=\left ( p.v \right )\vec{B}-\left ( p.v \right )\vec{A}

So that \underset{AB}{\rightarrow}=\left ( i+2j+3k \right )-\left ( 2i=3j+5k \right )

= -i-j-2k

Similarly \underset{CD}{\rightarrow}=6i+6j+12k

= 6\left ( i+j+2k \right )

So that ratios are equal. so they are parellal

\underset{AB}{\rightarrow}\left | \right |\underset{CD}{\rightarrow}


Option 1)

AB\parallel CD

Correct option

Option 2)

DC\parallel AD

Incorrect Option

Option 3)

A,B,C are collinear

Incorrect Option

Option 4)

B,C,D are collinear

Incorrect Option

View Full Answer(1)
Posted by

divya.saini

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

If position vectors of A, B, C, D are respectively \vec{2i}+\vec{3j}+\vec{5k}, \vec{i}+\vec{2j}+\vec{3k}, -\vec{5i}+\vec{4j}-\vec{2k} and \vec{i}+\vec{10j}+\vec{10k}, then

  • Option 1)

    AB\parallel CD

  • Option 2)

    DC\parallel AD

  • Option 3)

    A, B, C, are collinear

  • Option 4)

    B,C,D are collinear

 

As we learnt

Position vector -

Let O be a fixed origin, then position vector of P is \overrightarrow{OP}

- wherein

 

 A= 2i+3j+5k

B= i+2j+3k

C=-5i+4j-2k

D=i+10j+10k

A\vec{B}= -i-j-2k= -\left ( i+j+k \right )

C\vec{D}= 6i+6j+12k

=6\left ( i+j+2k \right )

So \overrightarrow{AB}=\lambda \overrightarrow{CD}

So \overrightarrow{AB}\left | \right | \overrightarrow{CD}

 

So 


Option 1)

AB\parallel CD

Correct option

Option 2)

DC\parallel AD

Incorrect option

Option 3)

A, B, C, are collinear

Incorrect option

Option 4)

B,C,D are collinear

Incorrect option

View Full Answer(1)
Posted by

Aadil

Angle between the vectors \vec{2i}+\vec{6j}+\vec{3k} \:and \:\vec{12i}-\vec{4j}+\vec{3k} \:is

  • Option 1)

    cos^-(\frac{1}{10})

  • Option 2)

    cos^-(\frac{9}{11})

  • Option 3)

    cos^-(\frac{9}{91})

  • Option 4)

    cos^-(\frac{1}{9})

 

As we learnt

Angle between vector a and vector b -

\cos \Theta =\frac{\vec{a}.\vec{b}}{\left | \vec{a} \right |\left | \vec{b} \right |}

- wherein

Here 0\leq \Theta \leq \pi??????

 

 \cos \Theta =\frac{\vec{a.\vec{b}}}{\left | \vec{a} \right |\left | \vec{b} \right |}

\frac{\left ( 2i+6j+3\vec{k} \right )}{\sqrt{2^{2}+6^{2}+3^{2}}}.\frac{\left ( 12i-4j+3k \right )}{\sqrt{12^{2}+4^{2}+3^{2}}}

=\frac{24-24+9}{\sqrt{49}\times \sqrt{169}}

=\frac{9}{7\times 13}=\frac{9}{7\times 13}= \frac{9}{91}

\Theta =\cos ^{-1}\left ( \frac{9}{91} \right )


Option 1)

cos^-(\frac{1}{10})

Incorrect Option

Option 2)

cos^-(\frac{9}{11})

Incorrect Option

Option 3)

cos^-(\frac{9}{91})

Correct Option

Option 4)

cos^-(\frac{1}{9})

Incorrect Option

View Full Answer(1)
Posted by

Plabita

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img