Get Answers to all your Questions

header-bg qa

Let a ,b,c be non zero real number such that Definite integral under limit 0 to 1 (1+cos^8x)(ax^2+bx+c) =Definite integral under limit 0 to 2 (1+cos^8x)(ax^2+bx+c) , Then the quadratic equation ax^2+bx+c=0 has

Answers (1)

best_answer

Solution:   Let    f(x)=(1+cos^8x)(ax^2+bx+c)

                We are given

                 Rightarrow         int_0^1f(x)hspace0.1cmdx=int_0^2f(x)hspace0.2cmdx

                     int_0^1f(x)hspace0.1cmdx=int_0^1f(x)hspace0.2cmdx+int_1^2f(x)hspace0.2cmdx 

                  int_1^2f(x)hspace0.2cmdx=0

       If           f(x)> 0 (f(x)< 0)forall xin [1,2]

      Then         int_1^2f(x)hspace0.2cmdx> 0(int_1^2f(x)hspace0.2cmdx< 0)

          	herefore      f(x) is partly positive and partly negative on[1,2]

       Rightarrow      There exist alpha ,eta in [1,2] such that

   As f is continuous on [1,2] there exists gamma lying between alpha and eta

    Rightarrow    (1+cos^8gamma )(agamma ^2+bgamma +c)=0

  Rightarrow    agamma ^2+bgamma +c=0            [ecause 1+cos^8gamma geq 1]

 Thus ,    ax^2+bx+c=0 has at least one root in [1,2]

Posted by

Deependra Verma

View full answer