Get Answers to all your Questions

header-bg qa

need solution for rd sharma maths class 12 chapter Solution of simultaneous linear equation exercise 7.2 question 3

Answers (1)

Answer:

            x= \frac{-9k}{13},y= \frac{-k}{13},z= k

Hint:

If \left | A \right |= 0, then the system of equation has non-trivial solution.

Given:

            3x-y+2z=0

            4x+3y+3z=0

            5x+7y+4z=0

Explanation:

The given homogeneous system can be written in matrix form

i.e.        \begin{bmatrix} 3 & -1 & 2\\ 4& 3 & 3\\ 5& 7 & 4 \end{bmatrix}\begin{bmatrix} x\\ y\\ z \end{bmatrix}=\begin{bmatrix} 0\\ 0\\0 \end{bmatrix}

                    A=\begin{bmatrix} 3 & -1 & 2\\ 4& 3 & 3\\ 5& 7 & 4 \end{bmatrix}

let

                  \left | A \right |=\begin{vmatrix} 3 & -1 & 2\\ 4& 3 & 3\\ 5& 7 & 4 \end{vmatrix}

                         = 3(12-21)+1(16-15)+2(28-15)

                         = -27+1+26

                         = 0

So, the given system of equation has a non-trivial solution.

To find these solutions, we write the first two equations as

                        3x-y=-2z

                        4x+3y=-3z

Let z=k, then we have

                        \begin{bmatrix} 3 & -1\\ 4 & 3\end{bmatrix}\begin{bmatrix} x\\ y\end{bmatrix}=\begin{bmatrix} -2k\\ -3k\end{bmatrix}

                A=\begin{bmatrix} 3 & -1\\ 4 & 3\end{bmatrix},X=\begin{bmatrix} x\\ y\end{bmatrix},B=\begin{bmatrix} -2k\\ -3k\end{bmatrix}

Where,

               \left | A \right |=\begin{vmatrix} 3 & -1\\ 4 & 3\end{vmatrix}=13\neq 0

So A^{-1} exists

                adjA=\begin{bmatrix} 3 & 1\\ -4 & 3\end{bmatrix}

                A^{-1}=\frac{1}{\left | A \right |}adjA

                A^{-1}=\frac{1}{13}\begin{bmatrix} 3 & 1\\ -4& 3\end{bmatrix}

Now,   X=A^{-1}B

                     \begin{bmatrix} x\\ y\end{bmatrix}=\frac{1}{13}\begin{bmatrix} 3 & 1\\ -4& 3\end{bmatrix}\begin{bmatrix} -2k\\ -3k\end{bmatrix}

                                =\frac{1}{13}\begin{bmatrix} -9k\\ -k\end{bmatrix}

                    x=\frac{-9k}{13}, y=\frac{-k}{13}

Put in third equation, it satisfies it too.

Hence x=\frac{-9k}{13}, y=\frac{-k}{13},z=k, where k\in R

 

 

 

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads