Get Answers to all your Questions

header-bg qa

provide solution for rd sharma maths class 12 chapter Solution of simultaneous linear equation exercise 7.2 question 6

Answers (1)

Answer:

            x= \frac{k}{3},y= \frac{2k}{3},z= k

Hint:

If \left | A \right |= 0, then the system of equation has non-trivial solution.

Given:

            x+y-z=0

            x-2y+z=0

            3x+6y-5z=0

Explanation:

The given homogeneous system can be written in matrix form

i.e.        \begin{bmatrix} 1 & 1 & -1\\ 1& -2 & 1\\ 3& 6 & -5 \end{bmatrix}\begin{bmatrix} x\\ y\\ z \end{bmatrix}=\begin{bmatrix} 0\\ 0\\0 \end{bmatrix}

                    A=\begin{bmatrix} 1 & 1 & -1\\ 1& -2 & 1\\ 3& 6 & -5 \end{bmatrix}

let

                  \left | A \right |=\begin{vmatrix} 1 & 1 & -1\\ 1& -2 & 1\\ 3& 6 & -5 \end{vmatrix}

                         = 1(10-6)-1(-5-3)-1(6+6)

                         = 4+8-12

                         = 0

So, the given system of equation has a non-trivial solution.

To find these solutions, we write the first two equations as

                        x+y=z

                        x-2y=-z

Let z=k, then we have

                        \begin{bmatrix} 1 & 1\\ 1 & -2\end{bmatrix}\begin{bmatrix} x\\ y\end{bmatrix}=\begin{bmatrix} k\\ -k\end{bmatrix}

                A=\begin{bmatrix} 1 & 1\\ 1 & -2\end{bmatrix},X=\begin{bmatrix} x\\ y\end{bmatrix},B=\begin{bmatrix} k\\ -k\end{bmatrix}

Where,

               \left | A \right |=\begin{vmatrix} 1 & 1\\ 1 & -2\end{vmatrix}=-3\neq 0

So A^{-1} exists

                adjA=\begin{bmatrix} -2 & -1\\ -1 & 1\end{bmatrix}

                A^{-1}=\frac{1}{\left | A \right |}adjA

                A^{-1}=\frac{1}{-3}\begin{bmatrix} -2 & -1\\ -1& 1\end{bmatrix}

Now,   X=A^{-1}B

                     \begin{bmatrix} x\\ y\end{bmatrix}=\frac{1}{-3}\begin{bmatrix} -2 & -1\\ -1& 1\end{bmatrix}\begin{bmatrix} k\\ -k\end{bmatrix}

                                \begin{bmatrix} x\\ y\end{bmatrix}=\begin{bmatrix} \frac{k}{3}\\ \frac{2k}{3} \end{bmatrix}

                    x=\frac{k}{3}, y=\frac{2k}{3}

Put in third equation, so these valuesx=\frac{k}{3}, y=\frac{2k}{3},z=k satisfies it.

Hence ,x=\frac{k}{3}, y=\frac{2k}{3},z=k where k\in R

 

 

 

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads