Get Answers to all your Questions

header-bg qa

Using Bohr’s postulates, derive the expression for the total energy of the electron revolving in nth orbit of hydrogen atom. Find the wavelength of  H_{\alpha } line, given the value of Rydberg constant, R= 1\cdot 1\times 10^{7}m^{-1}\cdot.

 

 

 

 
 
 
 
 

Answers (1)

For electron orbit
 \frac{mV_{n}^{2}}{r_{n}}= \frac{1}{4\pi \varepsilon _{0}}\; \frac{e^{2}}{r_{n}^{2}}
V_{n}= \frac{e}{\sqrt{4\pi \varepsilon _{0}mr_{n}}}---(i)
From Bhor's second postulate
mVr_{n}= \frac{nh}{2\pi }
V_{n}= \frac{nh}{2\pi mr_{n}}---(2)
from (1) & (2)
\frac{nh}{2\pi mr_{n}}= \frac{e}{\sqrt{4\pi \varepsilon _{0}mr_{n}}}
r_{n}= \left ( \frac{h^{2}}{m} \right )\left ( \frac{h}{2\pi } \right )^{2}\left ( \frac{4\pi \varepsilon _{0}}{e^{2}} \right )---(3)
Total energy = \frac{-e^{2}}{8\pi \varepsilon _{0}r_{n}}
substituting value of r_{n} from (3)
E_{n}= \frac{-me^{4}}{8n^{2}\varepsilon _{0}^{2}h^{2}}
     = \frac{-2\cdot 18\times 10^{-18}}{n^{2}}J
  =\frac{-13\cdot 6}{n^{2}}\, eV
for H_{\alpha } line in Balmer series n_{1}= 2,n_{2}= 3
\therefore \frac{1}{\lambda }= R\left ( \frac{1}{2^{2}}-\frac{1}{3^{2}} \right )= R\times \frac{5}{36}
\lambda= \frac{36}{5R}= \frac{36}{5\times 1\cdot 1\times 10^{7}}= \frac{36}{5\cdot 5}\times 10^{-7}
                = 6\cdot 563\times 10^{-7}
                

Posted by

Safeer PP

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads