Get Answers to all your Questions

header-bg qa

What is the integration of \(\sqrt{\textrm{sin}\left(x\right)}\) ?

 

Answers (1)

best_answer

We wish to evaluate the integral
$\displaystyle I=\int \sqrt{\sin x}\,dx$.

Put $\displaystyle \theta=\frac{\pi}{4}-\frac{x}{2}$. Then $x=\frac{\pi}{2}-2\theta$ and $dx=-2\,d\theta$.
Also
\[
\sin x=\sin\!\left(\frac{\pi}{2}-2\theta\right)=\cos 2\theta=1-2\sin^2\theta.
\]
Hence
\[
I=\int \sqrt{1-2\sin^2\theta}\;(-2)\,d\theta
=-2\int \sqrt{1-2\sin^2\theta}\;d\theta.
\]

The integrand is now in the standard form of the integrand of the incomplete elliptic integral of the second kind.
If we denote the incomplete elliptic integral of the second kind by
$\displaystyle E(\phi\,|\,m)=\int_0^{\phi}\sqrt{1-m\sin^2 t}\;dt$
(with parameter $m$), then
\[
\int \sqrt{1-2\sin^2\theta}\;d\theta = E(\theta\,|\,2)+C.
\]

Therefore substituting back $\theta=\dfrac{\pi}{4}-\dfrac{x}{2}$ we get
\[
\boxed{\,\displaystyle \int \sqrt{\sin x}\,dx
= -2\,E\!\left(\frac{\pi}{4}-\frac{x}{2}\,\Big|\,2\right) + C \,}
\]
where $E(\phi\,|\,m)$ is the incomplete elliptic integral of the second kind and $C$ is the constant of integration.
 

Posted by

Saumya Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads