Get Answers to all your Questions

header-bg qa

Need Solution for R.D. Sharma Maths Class 12 Chapter 27 Straight Line in Space  Exercise 27.2 Question 18  Maths Textbook Solution.

Answers (1)

Answer: The equation of the given question will be \vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})

Given: Determine the equation of the line passing through the point (1,2,-4) and perpendicular to the two lines;

\frac{x-8}{3}=\frac{y+9}{-16}=\frac{3-0}{7} &\frac{x-15}{3}=\frac{y-29}{8}=\frac{3-5}{5}   

Hint:  \vec{r}=\vec{a}+\lambda \vec{b}(for showing parallel lines)

Solution:

Direction\: ratio _{1}=3 i-16 \hat{j}+7 \hat{k}

Direction \: ratio _{2}=3 i-8 \hat{j}-5 \hat{k}

\begin{aligned} &\therefore D R_{1} \times D R_{2}=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & -8 & -5 \end{array}\right| \\ &=24 \hat{i}+36 \hat{j}+72 \hat{k} \\ &=12(2 \hat{i}+3 \hat{j}+6 \hat{k}) \\ &\therefore D R=2,3,6 \\ &\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \end{aligned}

The equation will be \vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads