Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter 27 Straight Line in Space exercise 27.1 question 16 maths textbook solution

Answers (1)

Answer :-

\begin{aligned} &\frac{x-1}{-2}=\frac{y-2}{14}=\frac{z-3}{3} \\ &(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})+\lambda(\widehat{-2} \imath+14 \hat{\jmath}+3 \hat{k}) \end{aligned}

Hint :-

\overrightarrow{r}=\overrightarrow{a}+\lambda \overrightarrow{b}

Given :-

The line passes through the point ( 1 , 2 , 3) and parallel to the line

\begin{aligned} &\frac{-x-2}{1}=\frac{y+3}{7}=\frac{2z-6}{3} \\ \end{aligned} 

Solution :-

The P.V of the point (1 , 2 , 3) will be \overrightarrow{r}=\hat{i}+2\hat{j}+3\hat{k}

The line \begin{aligned} &\frac{-x-2}{1}=\frac{y+3}{7}=\frac{2z-6}{3} \\ \end{aligned} can be written as \begin{aligned} &\frac{x+2}{-1}=\frac{y+3}{7}=\frac{z-3}{\frac{3}{2}} \\ \end{aligned}    ---------- (1)

So the direction ratios can be  -1,7,\frac{3}{2} or -2,14,3 PV=\widehat{-2}i+14\hat{j}+3\hat{k}

Cartesian equation of the line passing through ( 1 , 2 , 3) and parallel to (1)

\begin{aligned} &\frac{x-1}{-2}=\frac{y-2}{14}=\frac{z-3}{3} \\ \end{aligned}

Vector Equation

\overrightarrow{r}=\overrightarrow{a}+\lambda \overrightarrow{b}

      =\begin{aligned} &(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})+\lambda(\widehat{-2} \imath+14 \hat{\jmath}+3 \hat{k}) \end{aligned}

Posted by

Infoexpert

View full answer