Get Answers to all your Questions

header-bg qa
Filter By

All Questions

As shown in the figure, in Young's double slit experiment, a thin plate of thicknesst=10\mu m and refractive index t=1.2 is inserted infront of slit S_{1}. The experiment is conducted in air(\mu =1) and uses a monochromatic light of wavelength \lambda =500\; nm. Due to the insertion of the plate, centralmaxima is shifted by a distance of x\beta _{0}.\beta _{0} is the fringe-width befor the insertion of the plate. The value of the x is ________.

Option: 1

4


Option: 2

__


Option: 3

__


Option: 4

__


Given\; t=10 \times 10^{-6} \mathrm{~m} \mu=1.2

\lambda=500 \times 10^{-9} \mathrm{~m}

When the glass slab inserted infront of one slit then the shift of central fringe is obtained by

\begin{aligned} & \mathrm{t}=\frac{\mathrm{n} \lambda}{(\mu-1)} \\ & \Rightarrow \quad 10 \times 10^{-6}=\frac{\mathrm{n} \times 500 \times 10^{-9}}{(1.2-1)} \\ & 10 \times 10^{-6}=\frac{\mathrm{n} \times 500 \times 10^{-9}}{0.2} \\ & \mathrm{n}=4 \end{aligned}

View Full Answer(1)
Posted by

Info Expert 30

A square shaped coil of area70\; cm^{2} having 600 turns rotates in a magnetic field of 0.4 \mathrm{wbm}^{-2}, about an axis which is parallel to one of the side of the coil and perpendicular to the direction of field. If the coil completes 500 revolution in a minute, the instantaneous emf when the plane of the coil is inclined at 60^{\circ} with the field, will be ________ V.\left(\text { Take } \pi=\frac{22}{7}\right)

 

 

Option: 1

44


Option: 2

__


Option: 3

__


Option: 4

__


\text { Area (A) }=70 \mathrm{~cm}^2=70 \times 10^{-4} \mathrm{~m}^2

\begin{aligned} & \mathrm{B}=0.4 \mathrm{~T} \\ & \mathrm{f}=\frac{500 \text { revolution }}{60 \text { minute }}=\frac{500}{60} \frac{\mathrm{rev} .}{\mathrm{sec} .} \end{aligned}

Induced emf in rotating coil is given by

\begin{aligned} & \mathrm{e}=\mathrm{N} \omega \mathrm{BA} \sin \theta \\ & =600 \times 2 \times \frac{22}{7} \times \frac{500}{60} \times 0.4 \times 70 \times 10^{-4} \sin 30^{\circ} \\ & =600 \times 2 \times \frac{22}{7} \times \frac{500}{6} \times 0.4 \times 70 \times 10^{-4} \times \frac{1}{2} \\ & =44 \text { Volt } \end{aligned}

 

View Full Answer(1)
Posted by

Gautam harsolia

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

A block is fastened to a horizontal spring. The block is pulled to a distance x = 10 cm from its equilibrium position (at x = 0 ) on a frictionless surface from rest. The energy of the block at x = 5 cm 0.25 J. The spring constant of the spring is ________Nm^{-1}

Option: 1

50


Option: 2

___


Option: 3

__


Option: 4

__


Given

A=10cm

At any instant total energy for free oscillation remains constant=\frac{1}{2} \mathrm{kA}^2

\begin{aligned} & \Rightarrow \frac{1}{2} \mathrm{kA}^2=0.25 \mathrm{~J} \\ & \Rightarrow \frac{1}{2} \mathrm{kA}^2=0.25 \mathrm{~J} \quad \Rightarrow \mathrm{K}=\frac{0.25 \times 2}{\mathrm{~A}^2} \\ & \Rightarrow \mathrm{k}=\frac{0.50}{(10 \mathrm{~cm})^2}=\frac{0.50}{\left(10 \times 10^{-2}\right)}=\frac{0.50 \times 10^4}{100} \\ & \mathrm{k}=0.50 \times 100=50 \mathrm{~N} / \mathrm{m} \end{aligned}

View Full Answer(1)
Posted by

Divya Prakash Singh

For a body projected at an angle with the horizontal from the ground, choose the correct statement.

Option: 1

The vertical component of momentum is maximum at the highest point.


Option: 2

The Kinetic Energy (K.E.) is zero at the highest point of projectile motion.


Option: 3

The horizontal component of velocity is zero at the highest point.


Option: 4

Gravitational potential energy is maximum at the highest point.


At highest point height is maximum and vertical component of velocity is zero.
So momentum is zero. At highest point horizontal component of velocity will not be zero but vertical component of velocity is equal to zero and because of this K.E. will not be equal to zero. Gravitational potential energy is maximum at highest point and equal to\mathrm{mgH}=\mathrm{mg}\left(\frac{\mathrm{u}^2 \sin ^2 \theta}{2 \mathrm{~g}}\right)

Therefore the correct option is (4).

View Full Answer(1)
Posted by

Gaurav

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Nucleus A having \mathrm{Z=17} and equal number of protons and neutrons has \mathrm{1.2 \mathrm{MeV}} binding energy per nucleon. Another nucleus \mathrm{\mathrm{B}\: of\: Z=12} has total 26 nucleons and 1.8 \mathrm{MeV} binding energy per nucleons. The difference of binding energy of \mathrm{B \: and \: A} will be ___________\mathrm{\mathrm{MeV}.}
 

Option: 1

6


Option: 2

-


Option: 3

-


Option: 4

-


\mathrm{ \text { For Nucleus A } }
\mathrm{Z}=17=\text { Nummber of protons }           \mathrm{Given\left ( Z=N \right )\therefore N=17}
\mathrm{A}=34=\mathrm{Z}+\mathrm{N}
\mathrm{E}_{\mathrm{bn}}=1.2 \mathrm{MeV}
\frac{\mathrm{\left(\mathrm{E}_{\mathrm{B}}\right)_1 }}{A}=1.2 \mathrm{MeV}
\left(\mathrm{E}_{\mathrm{B}}\right)_1=(1.2 \mathrm{MeV}) \times \mathrm{A}
\left(\mathrm{E}_{\mathrm{B}}\right)_1=(1.2 \mathrm{MeV}) \times 34
\left(\mathrm{E}_{\mathrm{B}}\right)_1=40.8 \mathrm{MeV} \rightarrow \text { Binding energy of Nucleus } \mathrm{A}

View Full Answer(1)
Posted by

Deependra Verma

In the given circuit, the value of \mathrm{\left|\frac{\mathrm{I}_1+\mathrm{I}_3}{\mathrm{I}_2}\right|} is ___________.

Option: 1

2


Option: 2

-


Option: 3

-


Option: 4

-


Apply KVL in loop (1)
\mathrm{ 20-10-10 \mathrm{I}=0 }
Or \mathrm{ I=1 \mathrm{Amp} }
Apply KVL in loop (2)

\mathrm{-10+5 I^{\prime}=0 }
\mathrm{ \text { Or } I^{\prime}=2 \mathrm{Amp} }
On comparing \mathrm{I}_3=1 \mathrm{~A}
\mathrm{I}_2=\mathrm{I}_1=\frac{\mathrm{I}^{\prime}}{2}=1 \mathrm{Amp}
So, the value of \left|\frac{\mathrm{I}_1+\mathrm{I}_3}{\mathrm{I}_2}\right|=\left|\frac{1+1}{1}\right|=2 \mathrm{Amp}.

View Full Answer(1)
Posted by

Sanket Gandhi

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


The surface of water in a water tank of cross section area 750 \mathrm{~cm}^2 on the top of a house is \mathrm{h \mathrm{~m}} above the tap level. The speed of water coming out through the tap of cross section area 500 \mathrm{~mm}^2$ is $30 \mathrm{~cm} / \mathrm{s}. At that instant, \mathrm{\frac{d h}{d t}} is \mathrm{x\times 10^{-3} \mathrm{~m} / \mathrm{s}}. The value of \mathrm{x} will be_______________
 

Option: 1

2


Option: 2

-


Option: 3

-


Option: 4

-


By using equation of continuity
\begin{aligned} & \mathrm{A}_1 \mathrm{v}_1=\mathrm{A}_2 \mathrm{v}_2 \\ & 750 \times 10^{-4} \times \mathrm{v}_1=500 \times 10^{-6} \times 30 \times 10^{-2} \\ & \mathrm{v}_1=20 \times 10^{-4} \mathrm{~m} / \mathrm{sec} \\ & \mathrm{v}_1=2 \times 10^{-3} \mathrm{~m} / \mathrm{sec} \end{aligned}
Given : \frac{\mathrm{dh}}{\mathrm{dt}}=\mathrm{v}=\mathrm{x} \times 10^{-3} \mathrm{~m} / \mathrm{sec}.
Therefore

\mathrm{x}=2

View Full Answer(1)
Posted by

sudhir.kumar

The escape velocities of two planets A and B are in the ratio 1: 2. If the ratio of their radii respectively is 1: 3, then the ratio of acceleration due to gravity of planet A to the acceleration of gravity of planet B will be :

Option: 1

\frac{3}{2}


Option: 2

\frac{2}{3}


Option: 3

\frac{3}{4}


Option: 4

\frac{4}{3}


Given 

\begin{aligned} & \frac{\mathrm{v}_{\mathrm{A}}}{\mathrm{v}_{\mathrm{B}}}=\frac{1}{2} \\ & \frac{\mathrm{r}_{\mathrm{A}}}{\mathrm{r}_{\mathrm{B}}}=\frac{1}{3} \\ & \frac{\mathrm{g}_{\mathrm{A}}}{\mathrm{g}_{\mathrm{B}}}=? \end{aligned}

As we know,

\mathrm{v}=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}

Hence,

\frac{\mathrm{v}_{\mathrm{A}}}{\mathrm{v}_{\mathrm{B}}}=\frac{\sqrt{\frac{2 \mathrm{GM}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{A}}}}}{\sqrt{\frac{2 \mathrm{GM}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{B}}}}}=\sqrt{\frac{\mathrm{M}_{\mathrm{A}} \mathrm{R}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{B}} \mathrm{R}_{\mathrm{A}}}}=\frac{1}{2} _____________(i)

Given

\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{B}}}=\frac{1}{3}:__________(ii)

Therefore,

\begin{aligned} \frac{g_{\mathrm{A}}}{g_{\mathrm{B}}} & =\frac{\mathrm{M}_{\mathrm{A}} \mathrm{R}_{\mathrm{A}}^2}{\mathrm{M}_{\mathrm{B}} \mathrm{R}_{\mathrm{B}}^2} \\ & =\frac{1}{4} \times \frac{1}{3} \times 9 \\ & =\frac{3}{4} \end{aligned}

View Full Answer(1)
Posted by

jitender.kumar

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

A coil is placed in magnetic field such that plane of coil is perpendicular to the direction of magnetic field. The magnetic flux through a coil can be changed:

A. By changing the magnitude of the magnetic field within the coil.

B. By changing the area of coil within the magnetic field.

C. By changing the angle between the direction of magnetic field and the plane of the coil.

D. By reversing the magnetic field direction abruptly without changing its magnitude.

Choose the most appropriate answer from the options given below :

Option: 1

A and B only


Option: 2

A, B and D only


Option: 3

A, B and C only


Option: 4

A and C only


$$ \phi=\mathrm{BA} \cos \theta
This show
(1) by changing B
(2) by changing \mathrm{A}
(3) Angle (\theta) between B and plane of coil.

View Full Answer(1)
Posted by

Sumit Saini

A force \mathrm{\mathrm{F}=\left(5+3 y^2\right)} acts on a particle in the \mathrm{y}-direction, where \mathrm{F} is in newton and \mathrm{y} is in meter. The work done by the force during a displacement from \mathrm{y=2 \mathrm{~m} \: to\: y=5 \mathrm{~m}\: is \: }_______________\mathrm{J}
 

Option: 1

132 J


Option: 2

-


Option: 3

-


Option: 4

-


Given :
\mathrm{F=\left(5+3 y^2\right)} in the \mathrm{ y} direction
Work done is given by
\mathrm{W}=\int_{\mathrm{y}_1}^{\mathrm{y}_2} \text { F.dy }
\mathrm{y}_1=2 \mathrm{~m}, \quad \mathrm{y}_2=5 \mathrm{~m}
\mathrm{~W}=\int_2^5\left(5+3 \mathrm{y}^2\right) \mathrm{dy}
\mathrm{W}=\int_2^5 5 \mathrm{dy}+\int_2^5 3 \mathrm{y}^2 \mathrm{dy}
\mathrm{W}=[5 \mathrm{y}]_2^5+\left[\frac{3 \mathrm{y}^3}{3}\right]_2^5
\mathrm{~W}=(5 \times 5-5 \times 2)+(125-8)
\mathrm{W}=(25-10)+117
\mathrm{W}=132 \mathrm{Joule}
 

View Full Answer(1)
Posted by

Gautam harsolia

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img