Get Answers to all your Questions

header-bg qa
Filter By

All Questions

Q2.    Formulate the following problems as a pair of equations, and hence find their solutions:

                (iii) Roohi travels 300 km to her home partly by train and partly by bus. She takes 4 hours if she travels 60 km by train and the remaining by bus. If she travels 100 km by train and the remaining by bus, she takes 10 minutes longer. Find the speed of the train and the bus separately.

Let the speed of the train and bus be u and v respectively

Now According to the question,

\frac{60}{u}+\frac{240}{v}=4

And

\frac{100}{u}+\frac{200}{v}=4+\frac{1}{6}

\Rightarrow \frac{100}{u}+\frac{200}{v}=\frac{25}{6}

Let, 

\frac{1}{u}=p\:and\:\frac{1}{v}=q

Now, our equation becomes

60p+140q=4

\Rightarrow 15p+60q=1.........(1)

And

100p+200q=\frac{25}{6}

\Rightarrow 4p+8q=\frac{1}{6}

\Rightarrow 24p+48q=1..........(2)

By Cross Multiplication method,

\frac{p}{b_1c_2-b_2c_1}=\frac{q}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}

\frac{q}{(60)(-1)-(48)(-1)}=\frac{p}{(-1)(24)-(-1)(15)}=\frac{1}{(15)(48)-(60)(24)}

\frac{p}{-60+48}=\frac{q}{-24+15}=\frac{1}{720-1440}

\frac{p}{-12}=\frac{q}{-9}=\frac{1}{-720}

p=\frac{12}{720}=\frac{1}{60},\:and\:q=\frac{9}{720}=\frac{1}{80}

And Hence,

x=60\:and\:y=80

Hence the speed of the train and bus are 60 km/hour and 80 km/hour respectively.

View Full Answer(1)
Posted by

Pankaj Sanodiya

Q2.    Formulate the following problems as a pair of equations, and hence find their solutions:

                (ii) 2 women and 5 men can together finish an embroidery work in 4 days, while 3 women and 6 men can finish it in 3 days. Find the time taken by 1 woman alone to finish the work, and also that taken by 1 man alone.

Let the number of days taken by woman and man be x and y respectively,

The proportion of Work done by a woman in a single day

=\frac{1}{x }

The proportion of Work done by a man in a single day 

=\frac{1}{y }

Now, According to the question,

4\left ( \frac{2}{x}+\frac{5}{y} \right )=1

\Rightarrow \left ( \frac{2}{x}+\frac{5}{y} \right )=\frac{1}{4}

Also,

3\left ( \frac{3}{x}+\frac{6}{y} \right )=1

\Rightarrow \left ( \frac{3}{x}+\frac{6}{y} \right )=\frac{1}{3} 

Let, 

\frac{1}{x}=p\:and\:\frac{1}{y}=q

Now, our equation becomes

2p+5q=\frac{1}{4}

8p+20q=1........(1)

And

3p+6p=\frac{1}{3}

\Rightarrow 9p+18p=1.............(2)

By Cross Multiplication method,

\frac{p}{b_1c_2-b_2c_1}=\frac{q}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}

\frac{p}{(20)(-1)-(18)(-1)}=\frac{q}{(-1)(9)-(8)(-1)}=\frac{1}{(8)(18)-(20)(9)}

\frac{p}{-20+18}=\frac{q}{-9+8}=\frac{1}{146 -60}

\frac{p}{-2}=\frac{q}{-1}=\frac{1}{-36}

p=\frac{1}{18},\:and\:q=\frac{1}{36}

So,

x=18\:and\:y=36.

View Full Answer(1)
Posted by

Pankaj Sanodiya

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Q2. Formulate the following problems as a pair of equations, and hence find their solutions:
(i) Ritu can row downstream 20 km in 2 hours and upstream 4 km in 2 hours. Find her speed of rowing in still water and the speed of the current.

Let the speed of Ritu in still water be x and speed of current be y.

Let's solve this problem by using relative motion concept.

the relative speed when they are going in the same direction (downstream) is = x +y 

the relative speed when they are going in the opposite direction (upstream) = x - y

Now, as we know,

Relative distance = Relative speed * time .

So, According to the question,

x+y=\frac{20}{2}

\Rightarrow x+y=10.........(1)

And,

x-y=\frac{4}{2}

\Rightarrow x-y=2...........(2)

Now, adding (1) and (2), we get

2x=10+2

\Rightarrow 2x=12

\Rightarrow x=6

Putting this in (2)

6-y=2

\Rightarrow y=6-2

\Rightarrow y=4

Hence,

x=6\:and\:y=4. 

Hence, the speed of Ritu in still water is 6 km/hour, and the speed of the current is 4 km/hour.

View Full Answer(1)
Posted by

Pankaj Sanodiya

Q1.    Solve the following pairs of equations by reducing them to a pair of linear equations:

                    (viii)    \\\frac{1}{3x + y} + \frac{1}{3x -y} = \frac{3}{4}\\ \frac{1}{2(3x+y)} - \frac{1}{2(3x -y)} = \frac{-1}{8}

Given Equations,

\\\frac{1}{3x + y} + \frac{1}{3x -y} = \frac{3}{4}\\ \frac{1}{2(3x+y)} - \frac{1}{2(3x -y)} = \frac{-1}{8}

Let, 

\frac{1}{3x+y}=p\:and\:\frac{1}{3x-y}=q

Now, our equation becomes

p+q=\frac{3}{4}.........(1)

And

\\\frac{p}{2}-\frac{q}{2}=\frac{-1}{8}\\\\p-q=\frac{-1}{4}..........(2)

Now, Adding (1) and (2), we get

2p=\frac{3}{4}-\frac{1}{4}

\Rightarrow 2p=\frac{2}{4}

\Rightarrow p=\frac{1}{4}

Putting this value in (1)

\frac{1}{4}+q=\frac{3}{4}

\Rightarrow q=\frac{3}{4}-\frac{1}{4}

\Rightarrow q=\frac{2}{4}

\Rightarrow q=\frac{1}{2}

Now,

p=\frac{1}{4}=\frac{1}{3x+y}

\Rightarrow 3x+y=4...........(3)

And

q=\frac{1}{2}=\frac{1}{3x-y}

\Rightarrow 3x-y=2............(4)

Now, Adding (3) and (4), we get

6x=4+2

\Rightarrow 6x=6

\Rightarrow x=1

Putting this value in (3),

3(1)+y=4

\Rightarrow y=4-3

\Rightarrow y=1

Hence,

x=1,\:and\:y=1

View Full Answer(1)
Posted by

Pankaj Sanodiya

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Q1.    Solve the following pairs of equations by reducing them to a pair of linear equations:

                (vii)    \\\frac{10}{x + y} + \frac{2}{x - y}= 4\\ \frac{15}{x+y} - \frac{5}{x - y} = -2

Given Equations,

\\\frac{10}{x + y} + \frac{2}{x - y}= 4\\ \frac{15}{x+y} - \frac{5}{x - y} = -2

Let, 

\frac{1}{x+y}=p\:and\:\frac{1}{x-y}=q

Now, our equation becomes

10p+2q=4........(1)

And

15p-5q=-2..........(2)

By Cross Multiplication method,

\frac{p}{b_1c_2-b_2c_1}=\frac{q}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}

\frac{p}{(2)(2)-(-5)(-4)}=\frac{q}{(-4)(15)-(2)(10)}=\frac{1}{(10)(-5)-(15)(2)}

\frac{p}{4-20}=\frac{q}{-60-20}=\frac{1}{-50-30}

\frac{p}{-16}=\frac{q}{-80}=\frac{1}{-80}

p=\frac{1}{5},\:and\:q=1

Now,

p=\frac{1}{5}=\frac{1}{x+y}

\Rightarrow x+y=5........(3)

And,

q=1=\frac{1}{x-y}

\Rightarrow x-y=1...........(4)

Adding (3) and (4) we get,

\Rightarrow 2x=6

\Rightarrow x=3

Putting this value in (3) we get,

3+y=5

\Rightarrow y=2

And Hence,

x=3\:and\:y=2.

View Full Answer(1)
Posted by

Pankaj Sanodiya

Q1.    Solve the following pairs of equations by reducing them to a pair of linear equations:

                (vi)    \\6x + 3y = 6xy\\ 2x + 4y = 5 xy

Given Equations,

\\6x + 3y = 6xy\\\Rightarrow \frac{6x}{xy}+\frac{3y}{xy}=6\\\\\Rightarrow \frac{6}{y}+\frac{3}{x}=6\\and\\\ 2x + 4y = 5 xy\\\Rightarrow \frac{2x}{xy}+\frac{4y}{xy}=5\\\Rightarrow \frac{2}{y}+\frac{4}{x}=5

Let, 

\frac{1}{x}=p\:and\:\frac{1}{y}=q

Now, our equation becomes

6q+3p=6........(1)

And

2q+4p=5..........(2)

By Cross Multiplication method,

\frac{q}{b_1c_2-b_2c_1}=\frac{p}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}

\frac{q}{(3)(-5)-(-6)(4)}=\frac{p}{(6)(2)-(6)(-5)}=\frac{1}{(6)(4)-(3)(2)}

\frac{q}{-15+24}=\frac{p}{-12+30}=\frac{1}{24 -6}

\frac{q}{9}=\frac{p}{18}=\frac{1}{18}

q=\frac{1}{2}\:and\:p=1

And Hence,

x=1\:and\:y=2.

View Full Answer(1)
Posted by

Pankaj Sanodiya

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


Q1.    Solve the following pairs of equations by reducing them to a pair of linear equations:

                (v)    \\\frac{7x - 2y}{xy} = 5\\ \frac{8x + 7y}{xy} = 15

Given Equations,

\\\frac{7x - 2y}{xy} = 5\\\\\Rightarrow\frac{7}{y} -\frac{2}{x}=5\\ \frac{8x + 7y}{xy} = 15\\\Rightarrow \frac{8}{y}+\frac{7}{x}=15

Let, 

\frac{1}{x}=p\:and\:\frac{1}{y}=q

Now, our equation becomes

7q-2p=5........(1)

And

8q+7p=15..........(2)

By Cross Multiplication method,

\frac{q}{b_1c_2-b_2c_1}=\frac{p}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}

\frac{q}{(-2)(-15)-(7)(-5)}=\frac{p}{(-5)(8)-(-15)(7)}=\frac{1}{(7)(7)-(8)(-2)}

\frac{q}{30+35}=\frac{p}{-40+105}=\frac{1}{49 +16}

\frac{q}{65}=\frac{p}{65}=\frac{1}{65}

p=1,\:and\:q=1

And Hence,

x=1\:and\:y=1.

View Full Answer(1)
Posted by

Pankaj Sanodiya

Q1.    Solve the following pairs of equations by reducing them to a pair of linear equations:

                (iv)    \\\frac{5}{x - 1} + \frac{1}{y -2} = 2\\ \frac{6}{x-1} - \frac{3}{y -2} =1

Given Equations,

\\\frac{5}{x - 1} + \frac{1}{y -2} = 2\\ \frac{6}{x-1} - \frac{3}{y -2} =1

Let, 

\frac{1}{x-1}=p\:and\:\frac{1}{y-2}=q

Now, our equation becomes

5p+q=2........(1)

And

6p-3q=1..........(2)

Multiplying (1) by 3 we get

15p+3q=6..........(3)

Now, adding (2) and (3) we get

21p=7

\Rightarrow p=\frac{1}{3}

Putting this in (2)

6\left ( \frac{1}{3} \right )-3q=1

\Rightarrow 3q=1

\Rightarrow q=\frac{1}{3}

Now,

p=\frac{1}{3}=\frac{1}{x-1}\Rightarrow x-1=3\Rightarrow x=4

q=\frac{1}{3}=\frac{1}{y-2}\Rightarrow y-2=3\Rightarrow x=5

Hence,

x=4,\:and\:y=5. 

View Full Answer(1)
Posted by

Pankaj Sanodiya

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Q1.    Solve the following pairs of equations by reducing them to a pair of linear equations:

                (iii)    \\\frac{4}{x} + 3y = 14\\ \frac{3}{x} - 4y = 23

Given Equations,

\\\frac{4}{x} + 3y = 14\\ \frac{3}{x} - 4y = 23

Let, 

\frac{1}{x}=p\:and\:y=q

Now, our equation becomes

\Rightarrow 4p+3q=14........(1)

And

\Rightarrow 3p-4q=23..........(2)

By Cross Multiplication method,

\frac{p}{b_1c_2-b_2c_1}=\frac{q}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}

\frac{p}{(3)(-23)-(-4)(-14)}=\frac{q}{(-14)(3)-(-23)(4)}=\frac{1}{(4)(-4)-(3)(3)}

\frac{p}{-69-56}=\frac{q}{-42+92}=\frac{1}{-16-9}

\frac{p}{-125}=\frac{q}{50}=-\frac{1}{25}

p=5,\:and\:q=-2

And Hence,

x=\frac{1}{5}\:and\:y=-2.

View Full Answer(1)
Posted by

Pankaj Sanodiya

Q1.    Solve the following pairs of equations by reducing them to a pair of linear equations:

                (ii)    \\ \frac{2}{\sqrt x} + \frac{3}{\sqrt y} = 2\\ \frac{4}{\sqrt x} - \frac{9}{\sqrt y} = -1

Given Equations,

\\ \frac{2}{\sqrt x} + \frac{3}{\sqrt y} = 2\\ \frac{4}{\sqrt x} - \frac{9}{\sqrt y} = -1

Let, 

\frac{1}{\sqrt{x}}=p\:and\:\frac{1}{\sqrt{y}}=q

Now, our equation becomes

2p+3q=2........(1)

And

4p-9q=-1..........(2)

By Cross Multiplication method,

\frac{p}{b_1c_2-b_2c_1}=\frac{q}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}

\frac{p}{(3)(1)-(-9)(-2)}=\frac{q}{(-2)(4)-(1)(2)}=\frac{1}{(2)(-9)-(4)(3)}

\frac{p}{3-18}=\frac{q}{-8-2}=\frac{1}{-18-12}

\frac{p}{-15}=\frac{q}{-10}=\frac{1}{-30}

p=\frac{1}{2},\:and\:q=\frac{1}{3}

So,

p=\frac{1}{2}=\frac{1}{\sqrt{x}}\Rightarrow x=4

q=\frac{1}{3}=\frac{1}{\sqrt{y}}\Rightarrow y=9.

And hence 

x=4\:and\:y=9.

View Full Answer(1)
Posted by

Pankaj Sanodiya

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img