Get Answers to all your Questions

header-bg qa
Filter By

All Questions

A massless string connects two pulley of masses ' 2 \mathrm{~kg}' and '1 \mathrm{~kg}' respectively as shown in the figure.

The heavier pulley is fixed and free to rotate about its central axis while the other is free to rotate as well as translate. Find the acceleration of the lower pulley if the system was released from the rest. [Given, g=10 \mathrm{~m} / \mathrm{s}^2]

Option: 1

\frac{4}{3} \mathrm{~gm} / \mathrm{s}^2


Option: 2

\frac{3}{2} \mathrm{~gm} / \mathrm{s}^2


Option: 3

\frac{3}{4} \mathrm{~gm} / \mathrm{s}^2


Option: 4

\frac{2}{3} \mathrm{~gm} / \mathrm{s}^2


3/4gm/s2

 

View Full Answer(3)
Posted by

Guru G

Calculate the acceleration of block m_1 of the following diagram. Assume all surfaces are frictionless . Here m1 = 100kg and m2 = 50kg

 

Option: 1

0.33m/s2


Option: 2

0.66m/s2


Option: 3

1m/s2


Option: 4

1.32m/s2


0.66m/s2

View Full Answer(5)
Posted by

Guru G

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

When cell has stalled DNA replication fork, which checkpoint should be predominantly activated?

Option: 1

G1/S

 

Option: 2

G2/M

 

 

 

Option: 3

M

 

 

Option: 4

Both GM and M

 

G2/M should be activated as the cell has stalled DNA replication fork.

View Full Answer(1)
Posted by

Ajit Kumar Dubey

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

A 100 \; m long wire having cross-sectional area 6.25 \times 10^{-4}m^{2} and Young's modulus is 10^{10}Nm^{-2}  subjected to a load of 250\; N, then the elongation in the wire will be:
Option: 1 4 \times 10^{-3} \mathrm{~m}
Option: 2 6.25 \times 10^{-3} \mathrm{~m}
Option: 3 6.25 \times 10^{-6} \mathrm{~m}
Option: 4 4 \times 10^{-4} \mathrm{~m}

\begin{aligned} & \text { Stress }=\mathrm{y} \text { strain } \Rightarrow \frac{W}{\mathrm{~A}}=\mathrm{y} \frac{\Delta \ell}{\ell} \\ & \Delta \ell=\frac{\mathrm{W} \ell}{\mathrm{yA}} \Rightarrow \Delta \ell=\frac{250 \times 100}{10^{10} \times 6.25 \times 10^{-4}} \\ & \Delta \ell=4 \times 10^{-3} \mathrm{~m} \end{aligned}

Hence, the correct answer is option 1

View Full Answer(1)
Posted by

rishi.raj

A circular loop of radius r is carrying current I\; A. The ratio of the magnetic field at the center of circular loop and at a distance r from the center of the loop on its axis is:
Option: 1 2 \sqrt{2}: 1
Option: 2 1: 3 \sqrt{2}
Option: 3 1: \sqrt{2}
Option: 4 3 \sqrt{2}: 2

Magnetic field at centre of coil B_1=\frac{\mu_0 I}{2 r}

on the axis at

 x=r \Rightarrow B_2=\frac{\mu_0 \mathrm{Ir}^2}{2\left(r^2+x^2\right)^{3 / 2}}

\begin{aligned} & \mathrm{B}_2=\frac{\mu_0 \mathrm{Ir}^2}{2\left(\mathrm{r}^2+\mathrm{r}^2\right)^{3 / 2}} \\ & \mathrm{~B}_2=\frac{\mu_0 \mathrm{I}}{2(2 \sqrt{2} r)} \\ & \frac{\mathrm{B}_1}{\mathrm{~B}_2}=2 \sqrt{2} \end{aligned}

\(2 \sqrt{2}: 1\)

 

View Full Answer(1)
Posted by

rishi.raj

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


The following system of linear equations  7x+6y-2z=0 3x+4+2z=0 x-2y-6z=0, has 
Option: 1 infinitely many solutions, (x,y,z) satisfying y=2z.
Option: 2 infinitely many solutions, (x,y,z) satisfying x=2z.
Option: 3 no solution
Option: 4 only the trivial solution. 
 

 

 

System of Homogeneous linear equations -

\\\mathrm{Let,} \\\mathrm{a_1x+b_1y +c_1z=0\;\;\; ...(i)} \\\mathrm{a_2x+b_2y +c_2z=0\;\;\; ...(ii)} \\\mathrm{a_3x+b_3y +c_3z=0\;\;\; ...(iii)} \\\mathrm{be \; three\; homogeneous\; equation} \\\mathrm{and \; let\; \Delta = \begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix}}

 

If ? ≠ 0, then x= 0, y = 0, z = 0 is the only solution of the above system. This solution is also known as a trivial solution.

If ? = 0, at least one of x, y and z are non-zero. This solution is called a non-trivial solution.

Explanation: using equation (ii) and (iii), we have 

 

\\\mathrm{\frac{x}{b_2c_3-b_3c_2} = \frac{y}{c_2a_3-c_3a_2}=\frac{z}{a_2b_3-a_3b_2}} \\\\\mathrm{or \;\; \frac{x}{\begin{vmatrix} b_2 &c_2 \\ b_3 & c_3 \end{vmatrix}}=\frac{y}{\begin{vmatrix} c_2 &a_2 \\ c_3 & a_3 \end{vmatrix}} = \frac{z}{\begin{vmatrix} a_2 & b_2\\ a_3 & b_3 \end{vmatrix}} = k (say \neq 0)} \\\mathrm{\therefore x = k\begin{vmatrix} b_2 &c_2 \\ b_3 & c_3 \end{vmatrix}, y = k\begin{vmatrix} c_2& a_2\\ c_3 & a_3 \end{vmatrix} \; and \; z = k\begin{vmatrix} a_2 & b_2\\ a_3 & b_3 \end{vmatrix}} \\\mathrm{putting\; these\; value\; in \; equation \; (i), we\; have} \\\mathrm{a_1\left \{ k\begin{vmatrix} b_2 & c_2\\ b_3 & c_3 \end{vmatrix} \right \}+b_1\left \{ k\begin{vmatrix} c_2 & a_2\\ c_3 & a_3 \end{vmatrix} \right \}+c_1\left \{ \begin{vmatrix} a_2 & b_2\\ a_3 & b_3 \end{vmatrix} \right \}=0}

 

\\\mathrm{\Rightarrow a_1\begin{vmatrix} b_2 &c_2 \\ b_3 & c_2 \end{vmatrix}-b_1\begin{vmatrix} a_2 & c_2\\ a_3 &c_3 \end{vmatrix}+c_1\begin{vmatrix} a_2 &b_2 \\ a_3 &b_3 \end{vmatrix} = 0 \;\;\;[\because \; k \neq 0]} \\\mathrm{or \;\; \begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix} = 0 \; or \; \Delta = 0}

This is the condition for a system have Non-trivial solution.

-

 

 

\begin{aligned} &(1)\;\;7 x+6 y-2 z=0\\ &(2)\;\;3 x+4 y+2 z=0\\ &(3)\;\;x-2 y-6 z=0 \end{aligned}

\left|\begin{array}{ccc}{7} & {6} & {-2} \\ {3} & {4} & {2} \\ {1} & {-2} & {-6}\end{array}\right| =7(-20)-6(-20)-2(-10)=-140+120+20=0

so infinite non-trivial solution exist

now equation (1) + 3 equation (3)

10x - 20z = 0

x = 2z

Correct Option 2

View Full Answer(1)
Posted by

avinash.dongre

Let a-2b+c=1.  If f\left ( x \right )= \begin{vmatrix} x+a & x+2 &x+1 \\ x+b &x+3 &x+2 \\ x+c &x+4 & x+3 \end{vmatrix}, then :   
Option: 1 f(-50)=501
Option: 2 f(-50)=-1
Option: 3 f(50)=1
Option: 4 f(50)=-501
 

 

 

Elementary row operations -

Elementary row operations

Row transformation: Following three types of operation (Transformation) on the rows of a given matrix are known as elementary row operation (transformation).

    i) Interchange of ith row with jth row, this operation is denoted by 

        \\\mathrm{R_i \leftrightarrow R_j \;\;or\; R_{ij}}

    ii) The multiplication of ith row by a constant k (k≠0) is denoted by

         \\\mathrm{R_i \leftrightarrow kR_i \;\; or \; k\cdot R_i}    

    iii) The addition of ith row to the elements of jth row multiplied by constant k (k≠0) is denoted by

        \\\mathrm{R_i \leftrightarrow R_i + kR_j \;\; or \; k\cdot R_{ij}}

In the same way, three-column operations can also be defined too.

-

 

 

\\\text { Apply } \mathrm{R}_{1}=\mathrm{R}_{1}+\mathrm{R}_{3}-2 \mathrm{R}_{2}\\\Rightarrow f(x)=\left|\begin{array}{ccc}{1} & {0} & {0} \\ {x+b} & {x+3} & {x+2} \\ {x+c} & {x+4} & {x+3}\end{array}\right| \quad \Rightarrow f(x)=1 \\\quad \Rightarrow f(50)=1

Correct Option (3)

View Full Answer(1)
Posted by

avinash.dongre

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

If for some \alpha \: and\: \beta in R, the intersection of the following three planes  x+4y-2z=1 x+7y-5z=\beta x+5y+\alpha z=5 is aline in R^{3}, then \alpha +\beta is equal to : 
Option: 1 0
Option: 2 10
Option: 3 -10
Option: 4 2
 

 

 

Cramer’s law -

Cramer’s law for the system of equations in two variables :

\\\mathrm{Let \; a_1x +b_1y = c_1\; and \; a_2x + b_2y = c_2, where} \\\mathrm{\frac{a_1}{a_2}\neq\frac{b_1}{b_2}} \\\mathrm{on \; solving \; this \; equation \; by \; cross \; multiplication, we \; get} \\\mathrm{\frac{x}{b_1c_2-b_2c_1}=\frac{y}{a_1c_2-a_2c_1}=\frac{1}{a_1b_2-a_2b_1}} \\\mathrm{or \; \frac{x}{\begin{vmatrix} b_1 & c_1\\ b_2 & c_2 \end{vmatrix}}=\frac{y}{\begin{vmatrix} a_1 & c_1\\ a_2 & c_2 \end{vmatrix}}=\frac{1}{\begin{vmatrix} a_1 & b_1\\ a_2 & b_2 \end{vmatrix}}} \\\mathrm{or \; x=\frac{\begin{vmatrix} b_1 & c_1\\ b_2 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1\\ a_2 & b_2 \end{vmatrix}}, y=\frac{\begin{vmatrix} a_1 & c_1\\ a_2 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1\\ a_2 & b_2 \end{vmatrix}}}

We can observe that first row in the numerator of x is of constants and 2nd row in the numerator is of constants, and the denominator is of the coefficient of variables.

We can follow this analogy for the system of equations of 3 variable where third in the numerator of the value of z will be of constant and denominator will be formed by the value of coefficients of the variables.

 

 

\\\mathrm{so\; let \;us\; consider\; the \; system\; of \;equations} \\\mathrm{a_1x+b_1y +c_1z =d_1 \;\;...(i)} \\\mathrm{a_2x+b_2y +c_2z =d_2\;\;\;...(ii)} \\\mathrm{a_3x+b_3y +c_3z =d_3\;\;\;...(iii)} \\\mathrm{then \; \Delta,\; which\; will\; be \;determinant\; of\; coefficient\; of \;variables, will\; be } \\\mathrm{\Delta = \begin{vmatrix} a_1 & b_1 & c_1\\ a_2& b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix}, \Delta_1\; numerator\; of\; x \;is:} \\\mathrm{\Delta_1= \begin{vmatrix} d_1 & b_1 &c_1 \\ d_2 & b_2 & c_2\\ d_3 & b_3 & c_3 \end{vmatrix}, similarly\; \Delta_2 = \begin{vmatrix} a_1 & d_1 & c_1\\ a_2 & d_2 & c_2\\ a_3 & d_3 & c_3 \end{vmatrix}\; and \;} \\\mathrm{\Delta_3 = \begin{vmatrix} a_1 & b_1 & d_1\\ a_2 & b_2 & d_2\\ a_3 & b_3 & d_3 \end{vmatrix}, if \Delta \neq 0\; then\; \;x=\frac{\Delta_1}{\Delta}} \\\mathrm{y=\frac{\Delta_2}{\Delta}, z=\frac{\Delta_3}{\Delta}}

 

i) If ? ≠ 0, then the system of equations has a unique finite solution and so equations are consistent, and solutions are  \\\mathrm{x=\frac{\Delta_1}{\Delta}, y=\frac{\Delta_2}{\Delta}, z=\frac{\Delta_3}{\Delta}}

 

ii) If ? = 0, and any of \Delta_1\neq 0 \; or \;\Delta_2\neq 0 \; or \;\Delta_3\neq 0

Then the system of equations is inconsistent and hence no solution exists.

 

iii) If all \Delta =\Delta_1=\Delta_2=\Delta_3= 0 then

System of equations is consistent and dependent and it has an infinite number of solution.

-

 

 

\begin{array}{l}{\Delta=0 \Rightarrow\left|\begin{array}{ccc}{1} & {4} & {-2} \\ {1} & {7} & {-5} \\ {1} & {5} & {\alpha}\end{array}\right|=0} \\ {(7 \alpha+25)-(4 \alpha+10)+(-20+14)=0} \\ {3 \alpha+9=0 \Rightarrow \alpha=-3}\end{array}

 

\begin{array}{l}{\text { Also }\quad D_{3}=0 \Rightarrow\left|\begin{array}{lll}{1} & {4} & {1} \\ {1} & {7} & {\beta} \\ {1} & {5} & {5}\end{array}\right|=0} \\ {1(35-5 \beta)-(15)+1(4 \beta-7)=0} \\ {\beta=13}\end{array}

\alpha+ \beta=10

View Full Answer(1)
Posted by

avinash.dongre

At 300 K and 1 atm, 15 mL of a gaseous hydrocarbon requires 375 mL air containing 20% O2 by volume for complete combustion.  After combustion, the gases occupy 330 mL.  Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is :
Option: 1  C4H8  
Option: 2  C4H10
Option: 3  C3H6
Option: 4  C3H8
 

Volume of N in air = 375 × 0.8 = 300 ml

Volume of O2 in air = 375 × 0.2 = 75 ml
 

C_{x}H_{y} +\left ( x +\frac{y}{4} \right )O_{2} \; \rightarrow \; xCO_{2}(g) + \frac{y}{2} H_{2}O(l)

15ml                15\left ( x +\frac{y}{4} \right )

  0                         0                            15x                 -

 

After combustion total volume

330 =V_{N_{2}} + V_{CO_{2}}

330 = 300 + 15x 

x = 2 

Volume of O2 used

15\left ( x +\frac{y}{4} \right ) = 75

\left ( x +\frac{y}{4} \right ) = 5

y = 12 

So hydrocarbon is = C2H12

None of the options matches it therefore it is a BONUS.

----------------------------------------------------------------------

Alternatively  Solution


 C_{x}H_{y} +\left ( x +\frac{y}{4} \right )O_{2} \; \rightarrow \; xCO_{2}(g) + \frac{y}{2} H_{2}O(l)

15ml              15\left ( x +\frac{y}{4} \right )

  0                         0                            15x                 -

Volume of O2 used

15\left ( x +\frac{y}{4} \right ) = 75

\left ( x +\frac{y}{4} \right ) = 5

If further information (i.e., 330 ml) is neglected, option (C3H8 ) only satisfy the above equation.

View Full Answer(1)
Posted by

Ritika Jonwal

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img