Get Answers to all your Questions

header-bg qa
Filter By

All Questions

Let \left [ t \right ] denote the greatest integer \leq t and \lim_{x\rightarrow 0}x\left [ \frac{4}{x} \right ]=A. Then the function, f\left ( x \right )=\left [ x^{2} \right ]\sin \left ( \pi x \right ) is discontinuous, when x is equal to: 
Option: 1 \sqrt{A+1}
 
Option: 2 \sqrt{A}
 
Option: 3 \sqrt{A+5}
 
Option: 4 \sqrt{A+21}
 
 

 

 

 

\\\lim _{x \rightarrow 0} x\left(\frac{4}{x}-\left\{\frac{4}{x}\right\}\right)=A \quad \Rightarrow \lim _{x \rightarrow 0} 4-x\left\{\frac{4}{x}\right\}=A\\\Rightarrow 4-0=A

\\\text { (1) } x=\sqrt{A+1} \Rightarrow x=\sqrt{5} \Rightarrow \text { discontinuous }\\\text { (2) } x=\sqrt{A+21} \Rightarrow x=5 \Rightarrow \text { continuous }\\\text { (3) } x=\sqrt{A} \Rightarrow x=2 \Rightarrow \text { continuous }\\\text { (4) } x=\sqrt{A+5} \Rightarrow x=3 \Rightarrow \text { continuous }

Correct Option (1)

View Full Answer(1)
Posted by

avinash.dongre

Let f and g be differentiable functions on R such that fo g is the identity function. If for some a,b\epsilon \textbf{R},g^{'}(a)=5\: \: and\: \: g(a)=b then f^{'}(b) is equal to :   
Option: 1 \frac{2}{5}
Option: 2 5
Option: 3 1
Option: 4 \frac{1}{5}
 

 

 

Rules of Differentiation (Chain Rule) -

Rules of Differentiation (Chain Rule)

Chain Rule or Derivation of Composite Function:

The chain rule, which states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.

Let f and g be functions. For all x in the domain of g for which g is differentiable at x and f is differentiable at g(x), the derivative of the composite function

h(x) = (f?g)(x) = f (g(x)) Is given by

h′(x) = f’(g(x))?g’(x)

Composites of Three or More Functions

For all values of x for which the function is differentiable, if k(x) = h(f(g(x)))Then,

k^{\prime}(x)=h'\left ( f(g(x)) \right )\cdot f'\left ( g(x) \right )\cdot g'(x)

-

\\f(g(x))=x \\\Rightarrow f^{\prime}(g(x)) \cdot g^{\prime}(x)=1 \\Put \;\;x=a \\\Rightarrow f^{\prime}(g(a)) g^{\prime}(a)=1 \\\Rightarrow f^{\prime}(b) \times 5=1 \Rightarrow f^{\prime}(b)=\frac{1}{5}

Correct Option 4

View Full Answer(1)
Posted by

avinash.dongre

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

If x=2\sin \theta -\sin 2\theta and y=2\cos\theta -\cos 2\theta ,\: \theta \equiv \left [ 0,2\pi \right ], then \frac{\mathrm{d^{2}y} }{\mathrm{d} x^{2}}\: at\: \theta =\pi is :  
Option: 1 \frac{3}{8}
Option: 2 \frac{3}{4}
Option: 3 \frac{3}{2}
Option: 4 -\frac{3}{4}
 

 

 

Differentiation of Function in Parametric Form -

Differentiation of Function in Parametric Form

Sometimes, x and y are given as functions of a single variable, i.e., x = f(t) and y = g(t) are two functions and t is a variable. In such cases x and y are called parametric functions or parametric equations and t is called the parameter. 

To find \frac{dy}{dx} in such cases, first find the relationship between x and y by eliminating the parameter t and then differentiate with respect to t. 

But sometimes it is not possible to eliminate t, then in that case use

\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{f'(t)}{g'(t)}

-

{\frac{d x}{d \theta}=2 \cos \theta-2 \cos 2 \theta} \\ {\frac{d y}{d \theta}=-2 \sin \theta+2 \sin 2 \theta} \\ {\therefore \frac{d y}{d x}=\frac{\sin 2 \theta-\sin \theta}{\cos \theta-\cos 2 \theta}} \\ {=\frac{2 \sin \frac{\theta}{2} \cdot \cos \frac{3 \theta}{2}}{2 \sin \frac{\theta}{2} \sin \frac{3 \theta}{2}}=\cot \frac{3 \theta}{2}}

{\frac{d^{2} y}{d x^{2}}=\frac{-3}{2} \csc ^{2} \frac{3 \theta}{2} \cdot \frac{d \theta}{d x}} \\ {\frac{d^{2} y}{d x^{2}}=\frac{-\frac{3}{2} \csc ^{2} \frac{3 \theta}{2}}{2(\cos \theta-\cos 2 \theta)}} \\ {\frac{d^{2} y}{d x^{2}}|_{\theta=\pi}=-\frac{3}{4(-1-1)}=\frac{3}{8}}

Correct Option (1)

View Full Answer(1)
Posted by

avinash.dongre

Let f be any function continuous on [a,b] and twice differentiable on (a,b). If for all x\epsilon \left ( a,b \right ),f^{'}(x)>0 and f^{''}(x)<0, then for any c\epsilon (a,b),\frac{f(c)-f(a)}{f(b)-f(c)} is greater than : 
Option: 1 \frac{b-c}{c-a}
Option: 2 1
Option: 3 \frac{c-a}{b-c}
Option: 4 \frac{b+a}{b-a}
 

 

 

Lagrange’s Mean Value Theorem -

Lagrange’s Mean Value Theorem

Rolle’s theorem is a special case of the Mean Value Theorem. In Rolle’s theorem, we consider differentiable functions f defined on a closed interval [a, b] with f(a) = f(b) . The Mean Value Theorem generalized Rolle’s theorem by considering functions that do not necessarily have equal value at the endpoints. 

Statement

Let f (x) be a function defined on [a, b] such that

  1. it is continuous on [a, b],

  2. it is differentiable on (a, b).

Then there exists a real number c  (a, b) such that

f'(c)=\frac{f(b)-f(a)}{b-a}

Cauchy’s mean value Theorem

Cauchy's mean value theorem, also known as the extended mean value theorem. It states that if both function f(x) and g(x) are continuous on the closed interval [a, b] and differentiable on the open interval (a,  b) and g’(x) is not zero on that open interval, then there exists c in (a, b) such that

\frac{f'(c)}{g'(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}

-

 

 

 

Use LMVT for x \in[a,c]

\frac{\mathrm{f}(\mathrm{c})-\mathrm{f}(\mathrm{a})}{\mathrm{c}-\mathrm{a}}=\mathrm{f}^{\prime}(\alpha), \alpha \in(\mathrm{a}, \mathrm{c})

also use LMVT for x \in[c,b]

\frac{f(b)-f(c)}{b-c}=f^{\prime}(\beta), \beta \in(c, b)

\because f ''(x) < 0 \Rightarrow f '(x) is decreasing

\\ {f^{\prime}(\alpha)>f^{\prime}(\beta)} \\ {\frac{f(c)-f(a)}{c-a}>\frac{f(b)-f(c)}{b-c}} \\ {\frac{f(c)-f(a)}{f(b)-f(c)}>\frac{c-a}{b-c}(\because f(x)\text { is increasing) } }

View Full Answer(1)
Posted by

avinash.dongre

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

A spherical iron ball of 10cm radius is coated with a layer of ice of uniform thickness that melts at a rate of 50cm^{3}/min. When the thickness of ice is 5cm, then the rate (in cm / min.) at which of the thickness of ice decreases, is :  
Option: 1 5/6\pi
Option: 2 1/54\pi
Option: 3 1/36\pi
Option: 4 1/18\pi
 

 

 

Derivative as Rate Measure -

Derivative as Rate Measure

We have seen that for quantities that are changing over time, the rates at which these quantities change are given by derivatives. If two related quantities are changing over time, the rates at which the quantities change are related. For example, if a balloon is being filled with air, both the radius of the balloon and the volume of the balloon are increasing. 

If a variable quantity y depends on and varies with a quantity x, then the rate of change of y with respect to x is  \frac{dy}{dx}.

A rate of change with respect to time is simply called the rate of change.

For example, the rate of change of displacement (s) of an object w.r.t. time is velocity (v). \mathit{v=\frac{ds}{dt}}

When limit  Δt? 0 is applied, the rate of change becomes instantaneous and we get the rate of change of displacement (s)  w.r.t. time at an instant.

\text{i.e. }\lim _{\Delta t \rightarrow 0} \mathit{\frac{\Delta s}{\Delta t}=\frac{d s}{d t}}

-

{V=\frac{4}{3} \pi(10+a)^{3}} \\ {\frac{\partial V}{\partial t}=4 \pi(10+a)^{2} \cdot \frac{\partial a}{\partial t}=50 \frac{c m^{3}}{\min }} \\ {4 \pi(10+5)^{2} \cdot \frac{\partial a}{\partial t}=50 \frac{c m^{3}}{\min }} \\ {\frac{\partial a}{\partial t}=\frac{1}{18 \pi} \frac{c m}{\min }}

View Full Answer(1)
Posted by

avinash.dongre

if

\small \lim_{n \to \infty }\frac{1^{a}+2^{a}+......+n^{a}}{\left ( n+1 \right )^{a-1}\left [ \left ( na+1 \right )+\left ( na+2 \right ) +.......+\left ( na+n \right )\right ]}=\frac{1}{60}

for some positive real number a, then a is equal to :
Option: 1 7

Option: 2 8

Option: 3 \frac{15}{2}

Option: 4 \frac{17}{2}

\large \lim _{n \rightarrow \infty} \frac{1^{a}+2^{a}+3^{a}+\cdots+n^{a}}{(n+1)^{a-1}[(n a+1)+(n a+2)+\cdots+(n a+n)]}=\frac{1}{60}

\large \Rightarrow \lim _{n \rightarrow \infty} \frac{1^{a}+2^{a}+\cdots+n^{a}}{(n+1)^{a-1}\left[n^{2} a+\frac{n(n+1)}{2}\right]}=\frac{1}{60}

\large \Rightarrow \lim _{n \rightarrow \infty} \frac{2\left[ \sum_{k=1}^{n} k^{a}\right]}{(n+1)^{a-1}\left[2 n^{2} a+n^{2}+n\right]}=\frac{1}{60}

\large \lim _{n \rightarrow \infty} \frac{2 \sum_{k=1}^{n}\left(\frac{k}{n}\right)^{a}}{\frac{(n+1)^{a-1}}{n^{a-1}}\left[\frac{2 n^{2} a+n^{2}+n}{n}\right]}=\frac{1}{60}

\large \lim _{n \rightarrow \infty} \frac{2 \sum_{k=1}^{n}\left(\frac{k}{n}\right)^{a}}{\left(1+\frac{1}{n}\right)^{a-1}[2 n a+n+1]}=\frac{1}{60}

\large \lim _{n \rightarrow \infty} \frac{\frac{2}{n} \sum_{k=1}^{n}\left(\frac{k}{n}\right)^{a}}{\left(1+\frac{1}{n}\right)^{a-1}\left[2 a+1+\frac{1}{n}\right]}=\frac{1}{60}

\large {\color{Blue} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{1}^{n}\left(\frac{k}{n}\right)^{a}=\int_{0}^{1} x^{a} d x \quad[\text { Derivative as limit of a sum }]}

\large \therefore \frac{2 \int_{0}^{1} x^{a} d x}{2 a+1}=\frac{1}{60}

\large \\\Rightarrow \frac{\left.2\left(x^{a+1}\right)\right]_{0}^{1}}{(a+1)(2 a+1)}=\frac{1}{60} \\ \\\Rightarrow \frac{2}{(a+1)(2 a+1)}=\frac{1}{60} \\ \\\Rightarrow(a+1)(2 a+1)=120 \\ \\\Rightarrow 2 a^{2}+3 a+1=120 \\ \\\Rightarrow 2 a^{2}-3 a=119=0 \\ \\\Rightarrow a=\frac{-3 \pm \sqrt{9+952}}{4}

\large =\frac{-3 \pm \sqrt{961}}{4}=\frac{-3 \pm 31}{4} \quad(\text { since } a>0)

\large \\\text { Hence, the value of } a \text { is }\\ \\\frac{-3+31}{4}=\frac{28}{4}=7 \Rightarrow a=7

View Full Answer(1)
Posted by

vishal kumar

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


Let f(x)=x\: \cos ^{-1}\left ( -\sin \left | x \right | \right ),x\: \epsilon \left [ -\frac{\pi }{2},\frac{\pi }{2} \right ], then which of the following is true ?
   
Option: 1 f'(0)=-\frac{\pi }{2},
Option: 2 f' is decreasing in \left ( -\frac{\pi }{2},0 \right ) and increasing in \left (0,\frac{\pi }{2} \right ),
Option: 3 f is not differentiable at x=0  ,
Option: 4 f' is increasing in \left ( -\frac{\pi }{2},0 \right ) and decreasing in \left (0,\frac{\pi }{2} \right ),
 

 

 

Application of Monotonicity (Part 1 ) -

-

\begin{array}{l}{f^{\prime}(x)=x\left(\pi-\cos ^{-1}(\sin |x|)\right)} \\ {=x\left(\pi-\left(\frac{\pi}{2}-\sin ^{-1}(\sin |x|)\right)\right)} \\ {=x\left(\frac{\pi}{2}+|x|\right)}\end{array}

\begin{array}{ll}{f(x)=} {\left\{\begin{array}{ll}{x\left(\frac{\pi}{2}+x\right)} & {x \geq 0} \\ {x\left(\frac{\pi}{2}-x\right)} & {x<0}\end{array}\right.} \\ {f^{\prime}(x)=\left\{\begin{array}{ll}{\frac{\pi}{2}+2 x} & {x \geq 0} \\ {\frac{\pi}{2}-2 x} & {x<0}\end{array}\right.}\end{array}

f'(x) \text { is increasing in }\left(0, \frac{\pi}{2}\right) \text { and decreasing in }\left(\frac{-\pi}{2}, 0\right)

Correct Option (2)

View Full Answer(1)
Posted by

Kuldeep Maurya

If c is a point at which Roll's theorem holds for the function, f(x)=\log _{e}\left ( \frac{x^{2}+\alpha }{7x} \right ) in the interval \left [ 3,4 \right ], where \alpha \; \epsilon \; R thenf''(c) is equal to :
 
Option: 1 -\frac{1}{24}
Option: 2 -\frac{1}{12}
Option: 3 \frac{\sqrt{3}}{7}
Option: 4 \frac{1}{12}
 

 

 

Rolle’s Theorem -

Rolle’s Theorem

Informally, Rolle’s theorem states that if the outputs of a differentiable function f are equal at the endpoints of an interval, then there must be an interior point c where f ′(c) = 0

Rolle’s Theorem Statement:

Let f be a real-valued function defined on the closed interval [a, b] such that

  1. it is continuous on the closed interval [a, b],

  2. it is differentiable on the open interval (a, b), and

  3. f (a) = f (b).

There then exists at least one c ∈ (a, b) such that f ′(c) = 0.

-

{f(3)=f(4)} \\ {\frac{9+\alpha}{3}=\frac{16+\alpha}{4}}

\alpha=12

\\f'(x)=\frac{x^2-12}{x\left(x^2+12\right)}\\f'(c)=0\\\begin{array}{ll}{\therefore} & {c=\sqrt{12}} \\ {\therefore \quad} & {f^{\prime \prime}(c)=\frac{1}{12}}\end{array}

Correct Option (4)

View Full Answer(1)
Posted by

Kuldeep Maurya

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

\lim_{x\rightarrow 0}\left ( \frac{3x^{2}+2}{7x^{2}+2} \right )^{1/x^{2}}is equal to :
 
Option: 1 e
Option: 2 \frac{1}{e^{2}}
Option: 3 \frac{1}{e}
Option: 4 e^{2}
 

 

 

Limits of the form (1 power infinity) -

Limits of the form 1  (1 power infinity)

To find the limit of the exponential of form 1 , we will use the following results  

If \lim_{x\rightarrow a}\;f(x)=\lim_{x\rightarrow a}\;g(x)=0

Then,

\lim_{x\rightarrow a}\;\left [1+f(x) \right ]^{\frac{1}{g(x)}}=e^{\lim_{\;x\rightarrow a}\frac{f(x)}{g(x)}} .

Or

When,  \lim_{x\rightarrow a}\;f(x)=1 and \lim_{x\rightarrow a}\;g(x)=\infty

Then, 

\\\lim_{x\rightarrow a}\;\left [f(x) \right ]^{{g(x)}}=\lim_{x\rightarrow a}\;\left [1+f(x)-1 \right ]^{{g(x)}}\\\\\text{}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=e^{\lim_{\;x\rightarrow a}{\left (f(x)-1 \right )}{g(x)}}

Some particular cases  

\\\text{(a)}\;\;\;\lim_{x\rightarrow 0}\;(1+x)^{\frac{1}{x}}=e\\\\\text{(b)}\;\;\;\lim_{x\rightarrow 0}\;\left (1+\frac{1}{x} \right )^{x}=e\\\\\text{(c)}\;\;\;\lim_{x\rightarrow 0}\;(1+cx)^{\frac{1}{x}}=e^c\\\\\text{(d)}\;\;\;\lim_{x\rightarrow 0}\;\left (1+\frac{c}{x} \right )^{x}=e^c

-

 

  

 

 

Limits of the form (1 power infinity) -

Limits of the form 1  (1 power infinity)

To find the limit of the exponential of form 1 , we will use the following results  

If \lim_{x\rightarrow a}\;f(x)=\lim_{x\rightarrow a}\;g(x)=0

Then,

\lim_{x\rightarrow a}\;\left [1+f(x) \right ]^{\frac{1}{g(x)}}=e^{\lim_{\;x\rightarrow a}\frac{f(x)}{g(x)}} .

Or

When,  \lim_{x\rightarrow a}\;f(x)=1 and \lim_{x\rightarrow a}\;g(x)=\infty

Then, 

\\\lim_{x\rightarrow a}\;\left [f(x) \right ]^{{g(x)}}=\lim_{x\rightarrow a}\;\left [1+f(x)-1 \right ]^{{g(x)}}\\\\\text{}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=e^{\lim_{\;x\rightarrow a}{\left (f(x)-1 \right )}{g(x)}}

Some particular cases  

\\\text{(a)}\;\;\;\lim_{x\rightarrow 0}\;(1+x)^{\frac{1}{x}}=e\\\\\text{(b)}\;\;\;\lim_{x\rightarrow 0}\;\left (1+\frac{1}{x} \right )^{x}=e\\\\\text{(c)}\;\;\;\lim_{x\rightarrow 0}\;(1+cx)^{\frac{1}{x}}=e^c\\\\\text{(d)}\;\;\;\lim_{x\rightarrow 0}\;\left (1+\frac{c}{x} \right )^{x}=e^c

-

 

 

\\\lim _{x\to 0}\left(\frac{3x^2+2}{\:7x^2+2}\right)^{\frac{1}{x^2}}=\lim _{x\to 0}\left(1+\frac{3x^2+2}{\:7x^2+2}-1\right)^{\frac{1}{x^2}}\\\lim_{x\rightarrow 0}\left ( 1+\frac{-4x^2}{7x^2+2} \right )^{1/x^2}=e^{\lim _{x\to 0}\left(-\frac{4x^2}{7x^2+2}\right)\left(\frac{1}{x^2}\right)}\\=\frac{1}{e^2}

 

Correct Option (2)

View Full Answer(1)
Posted by

Kuldeep Maurya

Let f(x)=\left\{\begin{matrix} max \left\{\left|x\right|,\:x^2\right\}, &|x|\leq 2 \\ 8-2|x| & 2<|x|\leq 4 \end{matrix}\right. Let S be the set of points in the interval (-4,4) at which f is not differentiable. Then S:


Option: 1 is an empty set
Option: 2 equals {-2,-1,0,1,2}
Option: 3 equals{-2,-1,1,2}
Option: 4 equals{-2,2}
 

 

Condition for differentiability -

A function  f(x) is said to be differentiable at  x=x_{\circ }  if   Rf'(x_{\circ })\:\:and\:\:Lf'(x_{\circ })   both exist and are equal otherwise non differentiable

-

 

 

 

Geometrical interpretation of Derivative -

Let P be any point (x, y)  on the curve  y = f(x) and Q is a point in the neighbourhood of  P  on either side of  P. such that the co-ordinate of the point Q are 

(x+\delta x, y+\delta y)  satisfying the curve y = f(x)

\therefore \:M_{T}=slope\:of\:tangent

=\lim_{\delta x\rightarrow \circ }\:\:\frac{(y+\delta y)-y}{(x+\delta x)-x}=\lim_{\delta x\rightarrow \circ }\:\:\frac{\delta y}{\delta x}


\therefore \:\:M_{T}=(\frac{dy}{dx})\:\:at \;\:(x,\:y)

- wherein


Where (x, y)  on the curve and  MT  is tangent at (x, y).

 

f(x) = \left\{\begin{matrix} 8+2x, & -4\leq x<-2 \\ x^{2} ,&-2\leq x\leq -1 \\ \left | x \right |, &-1<x<1 \\ x^{2}, & 1\leq x\leq 2\\ 8-2x, & 2< x\leq 4 \end{matrix}\right.

Plot graph

f(x) is not differentiable at

x = -2,-1,0,1,2.

View Full Answer(1)
Posted by

Ritika Jonwal

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img