Get Answers to all your Questions

header-bg qa
Filter By

All Questions

 5 g of Na2SO4 was dissolved in x g of H2O. The change in freezing point was found to be 3.820C.  If Na2SO4 is 81.5% ionised, the value of x (Kf for water=1.860C kg mol−1) is approximately : (molar mass of S=32 g mol−1 and that of Na=23 g mol−1)
Option: 1  15 g
Option: 2  25 g
Option: 3  45 g
Option: 4  65 g  
 

View Full Answer(1)
Posted by

vishal kumar

The freezing point of benzene decreases by 0.450C when 0.2 g of acetic acid is added to 20 g of benzene.  If acetic acid associates to form a dimer in benzene, percentage association of acetic acid in benzene will be : (Kf for benzene=5.12 K kg mol−1)
Option: 1  74.6%
Option: 2 94.6
Option: 3  64.6%
Option: 4 80.4%  
 

In benzene ,

    2 CH_{3}COOH \rightleftharpoons \left ( CH_{3}COOH \right )_{2}

      t = 0                   1                                 -

     t = t                      1 - \beta                          \frac{\beta }{2}

Given:

   w = 0.2g                W = 20 g                  \Delta T = 0.45 K

As we know , \Delta T = \frac{1000 \times K_{f} \times w}{M \times W }

\Delta T = \frac{1000 \times 5.12 \times 0.2}{M \times 20 }= 0.45

 

\therefore , observed M = 113.78 (acetic acid)

Molecular weight of acetic acid = 60

i =\frac{normal \; molecular \; mass}{observed \; molecular \; mass}

\therefore \frac{m_{normal}}{m_{observed}} = 1 - \beta + \frac{\beta }{2}

\frac{60}{113.78} = 1 - \beta + \frac{\beta }{2}

\Rightarrow \beta = 0.945

% degree of association = 94.5 %

View Full Answer(1)
Posted by

vishal kumar

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

At room temperature, a dilute solution of urea is prepared by dissolving 0.60g of urea in 360 g of water. If the vapour pressure of pure water at this temperature is 35 mmHg, lowering of vapour pressure(in  mmHg)  will be: (molar mass of urea = 60g/mol)
Option: 1 0.017
Option: 2 0.028
Option: 3 0.027
Option: 4 0.031
 

Molecular weight of urea = 60 g / mol

Now, we know that :

Relative lowering of vapour pressure is equal to the molar mass of the solute.

\therefore \Delta P=35\times\frac{(\frac{0.6}{60})}{\frac{360}{18}+\frac{0.6}{60}}

\Delta P=35\times\frac{0.01}{20+0.01}

\Delta P=35\times0.00049

\Delta P=0.0174 \: mm Hg

\therefore option (1) is correct.

 

 

View Full Answer(1)
Posted by

Ritika Jonwal

The elevation of boiling point of 0.1 m aq CrCl_{3}.xNH_{3} solution is two times that of 0.05 aq. CaCl_{2}  solution. The value of x _____ (Assume 100% ionization of complex and CaCl_{2} , coordination number of Cr is 6 and that all of NH_{3} molecules are present inside the coordination sphere.)
 

\mathrm{\Delta T_{b}\; of \;CrCl_{3}.xNH_{3}= 2(\Delta T_{b}\; of \; CaCl_{2})}

i \times 0.1 = 2 \times 3 \times 0.05

Thus, i = 3

Therefore, the complex is dissociated into 3 ions.

Hence, complex is [Cr(NH_{3})_{5}Cl]Cl_{2}

Thus, the value is 5.

View Full Answer(1)
Posted by

Kuldeep Maurya

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

A set of solutions is prepared using 180 g of water as a solvent and 10 g of different non-volatile solutes A,B and C. The relative lowring of vapour pressure in the presence of these solutes are in the order [Given, molar mass of A=100 g mol -1; B=200 g mol -1; C=10,000 g mol -1]
Option: 1 B>C>A
Option: 2 C>B>A
Option: 3 A>B>C
Option: 4 A>C>B

Here vapour pressure of water is lowering.

We know this formula, 

Partial Vapour pressure of water Pwater = PoXwater

Lowering Vapour pressure of water = Po – Pwater

The relative lowering of vapour pressure  \mathrm{=\frac{P^o-P}{P^o}}=\mathrm{\frac{\Delta P}{P^o}} =1- \chi_{water}

\mathrm{\mathrm{\frac{\Delta P}{P^o}} =\chi_{solute}=\frac{\frac{m_{solute}}{M_{solute}}}{\frac{m_{solute}}{M_{solute}}+\frac{m_{water}}{M_{water}}}}

Now, 

\left(\frac{\Delta \mathrm{P}}{\mathrm{P}^{0}}\right)_{\mathrm{A}}=\frac{\frac{10}{100}}{\frac{10}{100}+\frac{180}{18}}

\left(\frac{\Delta \mathrm{P}}{\mathrm{P}^{0}}\right)_{\mathrm{B}}=\frac{\frac{10}{200}}{\frac{10}{200}+\frac{180}{18}}

\left(\frac{\Delta \mathrm{P}}{\mathrm{P}^{0}}\right)_{\mathrm{C}}=\frac{\frac{10}{10,000}}{\frac{10}{10,000}+\frac{180}{18}}

From above,

\left(\frac{\Delta \mathrm{P}}{\mathrm{P}^{0}}\right)_{\mathrm{A}}>\left(\frac{\Delta \mathrm{P}}{\mathrm{P}^{0}}\right)_{\mathrm{B}}>\left(\frac{\Delta \mathrm{P}}{\mathrm{P}^{0}}\right)_{\mathrm{C}}

View Full Answer(1)
Posted by

Kuldeep Maurya

How much amount of NaCl (in grams) should be added to 600g of water to decrease the freezing point of water to -0.2^{\circ}C? (Assume that the freezing point depression constant for water = 2K kg mol-1)
Option: 1 1.76
Option: 2 3.52
Option: 3 4.9
Option: 4 8.58

\begin{array}{l}{\Delta \mathrm{T}_{\mathrm{f}}=0.2^{\circ} \mathrm{C}} \\ {\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{ik_{f}m}} \\ {0.2=2 \times 2 \times \frac{w}{58.5} \times \frac{1000}{600}} \\\\ {w=\frac{0.2 \times 58.5 \times 600}{1000 \times 4}} {=\frac{1.2 \times 58.5}{40}=1.76 \mathrm{g}}\end{array}

View Full Answer(1)
Posted by

avinash.dongre

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


The osmotic pressure of a solution of NaCl is 0.10 atm and that of a glucose solution is 0.20 atm. The osmotic pressure of a solution formed by mixing 1L of the sodium chloride solution 2L of the glucose solution is \mathrm{x \times 10^{-3}atm}. x is _________ (nearest interger)
 

We know this formula.

\mathrm{ \pi_{f} v_{f}=\pi_{1} v_{1}+\pi_{2} v_{2} }

\mathrm{ \pi_{f} =\frac{\pi_{1} v_{1}+\pi_{2} v_{2}}{v_f} }

\mathrm{ \pi_{f} = \frac{0.1 \times 1+0.2 \times 2}{3} }

\mathrm{ \pi_{f} =\frac{0.5}{3}=\frac{500}{3} \times 10^{-3} }

\mathrm{ x =167 }

Ans = 167

------------------------------------------

Alternate Solution

\mathrm{ x =167 }

Ans = 167

View Full Answer(1)
Posted by

Kuldeep Maurya

The mole fraction of glucose (C_{6}H_{12}O_{6})  in an aqueous binary solution is 0.1. The mass percentage of water in it to the nearest integer is-
 

Mole fraction of glucose, in C_{6}H_{12}O_{6}=0.1

Now, lets assume we have 10 moles of solution.

Thus, moles of C_{6}H_{12}O_{6}=1

Ans, moles of H_2O = 9

Now, the mass of water = number of moles x molar mass

Thus, the mass of water  \mathrm{= 9 \times 18 = 162 \ g}

Mass of C_{6}H_{12}O_{6}=180\: gm

Now, mass percent of water is given as:

\mathrm{Mass\: \%\: of\: water\: =\: \frac{Mass\: of\: water}{Mass\: of\: water\: +\: mass\: of\: glucose}\: x\: 100}

 \mathrm{Mass\: \%\: of\: water\: =\: \frac{162}{180 +\: 162}\: x\: 100}

\mathrm{Mass\: \%\: of\: water\: =\: 47.3\%}

Thus, the correct answer is 47.

View Full Answer(1)
Posted by

Kuldeep Maurya

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

If 250\; cm^{3} of an aqueous solution containing 0.73\; g of a protein A is isotonic with one litre of another aqueous solution containing 1.65\; g of a protein B, AT 298\; K, the ratio of the molecular masses of A and B is ______\times 10^{-2} (to the nearest integer).
 

Let molar mass of protein A = x g/mol
Let molar mass of protein B = y g/mol

\pi_{\mathrm{A}}=\text { osmotic pressure of protein } \mathrm{A}=\frac{\left(\frac{0.73}{\mathrm{x}}\right)}{0.25} \mathrm{RT}

\pi_{\mathrm{B}}=\text { osmotic pressure of protein } \mathrm{B}=\frac{\left(\frac{1.65}{\mathrm{y}}\right)}{1} \mathrm{RT}

Now, \pi_{\mathrm{A}}=\pi_{\mathrm{B}}

\left(\frac{0.73}{\mathrm{x} \times 0.25}\right) \mathrm{RT}=\left(\frac{1.65}{\mathrm{y}}\right) \mathrm{RT}

\left(\frac{\mathrm{x}}{\mathrm{y}}\right)=\frac{0.73}{0.25 \times 1.65}=1.769 \cong 1.77

\mathrm{\frac{x}{y} = 177 \times 10^{-2}}

Ans = 177

View Full Answer(1)
Posted by

Kuldeep Maurya

2 molal solution of a weak acid HA has a freezing point of 3.885oC. The degree of dissociation of this acid is _________\times 10^{-3}. (Round off to the Nearest Integer). [Given : Molal depression constant of water \mathrm{=1.85\; K\; kg\; mol^{-1}} Freezing point of pure water = 0o C]
 

Given,

2 molal solution of a weak acid HA has a freezing point of 3.885ºC.

\mathrm{T}_{\mathrm{f} \text { sol. }}=3.885^{\circ} \mathrm{C}

m = 2

Molal depression constant of water (Kf) = 1.85 K kg mol-1

The freezing point of pure water  Ti = 0ºC

van't Hoff factor i is related to the degree of dissociation \alpha \alpha as, if n = number of ions,

\alpha=\frac{i-1}{n-1}

Here n = 2 (H+and A-

So, 

i = 1+\alpha

We know the formula of depression at the freezing point.

\mathrm{\Delta T = i\times K_f\times m}

\mathrm{\Delta T = T_f -T_i= i\times K_f\times m}

3.885 - 0= i\times 1.85\times 2

i = 1.05

Now,

i = 1+\alpha

1.05 = 1+\alpha

\alpha=0.05

\alpha=50\times10^{-3}

Ans = 50

View Full Answer(1)
Posted by

Kuldeep Maurya

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img