Let \vec{P} is the p.v of the orthocentre and \vec{g} is the p.v of the centroid of the triangle ABC, where circumcentre is the origin. If \vec{P}= K\vec{g}\: then \: K

  • Option 1)


  • Option 2)


  • Option 3)


  • Option 4)



Answers (1)
V Vakul

Use the concept of

Position vector -

Let O be a fixed origin, then position vector of P is \overrightarrow{OP}

- wherein



Centroid is intersection is \frac{x_{1}+x_{2}+x_{3}}{3} , \frac{y_{1}+y_{2}+y_{3}}{3}

orthocentre: intersection of altitudes.

so that in a triangle ABC the orthocentre H, centroid G and circumcentre M are collinear ang G divides HM internally in the ration 2:1

\therefore g=\frac{2\times M+1\times P}{3}

\Rightarrow p=3g

\therefore k=3                 \left [ \because M=\left ( 0,0,0 \right ) \right ]

Option 1)


Correct option

Option 2)


Incorrect option

Option 3)


Incorrect option

Option 4)


Incorrect option

Preparation Products

Knockout BITSAT 2021

It is an exhaustive preparation module made exclusively for cracking BITSAT..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout BITSAT-JEE Main 2021

An exhaustive E-learning program for the complete preparation of JEE Main and Bitsat.

₹ 27999/- ₹ 16999/-
Buy Now