Get Answers to all your Questions

header-bg qa

A and B are two points such that position vector of A is 2\hat{i}+\hat{j}-\hat{k}\: and\: \overrightarrow{AB}=\hat{i}-\hat{j}+\hat{k} then position vector of B is

Option: 1

3\hat{i}


Option: 2

\hat{i}+2\hat{j}-2\hat{k}


Option: 3

-\hat{i}-2\hat{j}+2\hat{k}


Option: 4

3\hat{j}


Answers (1)

best_answer

As we learned

Position Vector -

If \vec{a} and \vec{b} are the position of vectors of two points A and B then

 \overrightarrow{AB}= \vec{b}-\vec{a}

\overrightarrow{AB}= P \vee of B - P\vee of A          

 

- wherein

 

 \because \overrightarrow{AB}=P\cdot V \: of\: B-P\cdot V \: of\: A

P\cdot V \: of\: B=\overrightarrow{AB}+P\cdot V \: of\: A

P\cdot V \: of\: B=(\hat{i}-\hat{j}+\hat{k})+(2\hat{i}+\hat{j}-\hat{k})=3\hat{i}

 

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE