Get Answers to all your Questions

header-bg qa

A company dissolves 'x' amount of \mathrm{CO_{2}}  at 298 K in 1 litre of water to prepare soda water. \mathrm{ X=}____________ \mathrm{ \times10^{-3}}. (nearest integer)

(Given: partial pressure of \mathrm{CO_{2}} , at 298 K = 0.835 bar.

Henry's law constant for \mathrm{CO_{2}} at 298K = 1.67 kbar.

Atomic mass of H, C and O is 1, 12, and 16 g \mathrm{mol^{-1}}, respectively)

Option: 1

1221


Option: 2

--------


Option: 3

-----------


Option: 4

-----------


Answers (1)

best_answer

We have to find amount of \mathrm{CO}_{2} dissolved, in 1 litre of \mathrm{H}_{2} \mathrm{O}

Given, 

\mathrm{P_{CO_2}=0.835\ bar} ,

Henry's law constant, \mathrm{K_H=1.67\ kbar}

Using Henry's Law, we have 

\mathrm{P=K_{H} X, \quad X \text { is mole fraction }}

Let the mass of \mathrm{CO_2} dissolved be x. So we can write 

0.835=1.67 \times 10^{3} \times\left(\frac{\frac{x}{M_{CO_{2}}}}{\frac{x}{M_{\mathrm{CO}_{2}}}+\frac{1000}{18}}\right) \quad\left(\because \mathrm{lml=1 g} \; \text{of}\; \mathrm{H_{2} O}\right)

0.835=1.67 \times 10^{3}\left(\frac{\frac{x}{44}}{\frac{x}{44}+55.5}\right)=1.67 \times 10^{3}\left(\frac{\frac{x}{44}}{55.5}\right)

Now, assuming a very dilute solution, we can approximate as

55.5>> \frac{x}{44} \Rightarrow 55.5+\frac{x}{44} \simeq 55.5

Then,

\frac{x}{44}=\frac{0.835 \times 55.5}{1.67 \times 10^{3}} \Rightarrow x \approx 1221 \times 10^{-3} \mathrm{~g}

Correct answer is 1221

Posted by

Sanket Gandhi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE