Get Answers to all your Questions

header-bg qa

 A diverging beam of light from a point source S having divergence angle \alpha, falls symmetrically on a glass slab as shown. The angles of incidence of the two extreme rays are equal.  If the thickness of the glass slab is t and the refractive index n, then the divergence angle of the emergent beam is

                                                            

Option: 1

Zero


Option: 2

\alpha


Option: 3

sin−1(1/n)


Option: 4

2sin−1(1/n)


Answers (1)

best_answer

When a ray is an incident on a glass slab, after refraction through the slab, the emergent ray is parallel to the incident ray.

\begin{array}{l}{\text { Emergent ray } \mathrm{B}_{1} \mathrm{C}_{1} \text { is parallel to } \mathrm{SA}_{1}} \\ {\text { Emergent ray } \mathrm{B}_{2} \mathrm{C}_{2} \text { is parallel to } \mathrm{SA}_{2}} \\ {\therefore \text { Angle between } \mathrm{SA}_{1} \text { and } \mathrm{SA}_{2} \text { is equal to angle }} \\ {\text { between } \mathrm{B}_{1} \mathrm{C}_{1} \text { and } \mathrm{B}_{2} \mathrm{C}_{2} \text { drawn backwards. }} \\ {\therefore \text { Angle }=\alpha}\end{array}

Posted by

Ritika Jonwal

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE