Get Answers to all your Questions

header-bg qa

A plane surface is inclined making at angle \theta with the horizontal. from the bottom of this inclined plane a bullet is fired with velocity v. The maximum possible range of the bullet on the inclined plane is

Option: 1

\frac{v^{2}}{g}
 


Option: 2

\frac{v^{2}}{g(1+\sin \theta)}


Option: 3

\frac{v^{2}}{g(1-\sin \theta)}

 


Option: 4

\frac{v^{2}}{g(1+ \cos \theta)}


Answers (1)

best_answer

 

Projectile on an inclined plane -

  1. Important equations

                             U=Speed of projection

                          \alpha= Angle of projection above inclined plane (measured from horizontal line)

                           \theta = Angle of projection above inclined plane (measured from inclined plane)

                          \beta = Angle of inclination.

 

 

   a) Initial Velocity- U

       Component along x or along inclined plane =  U_{x} = Ucos\theta

      Component along y or perpendicular to  inclined plane = U_{y} = USin\theta

   b) Final velocity =V

      Component along x or along inclined plane = V_{x} = Ucos\theta - (gsin\beta).t

      Component along y or perpendicular to  inclined plane = V_{y} = Usin\theta - (gcos\beta).t

       and, V = \sqrt{V_{x}^{2} + V_{y}^{2} }

    c) Displacement=S

       Component along x or along inclined plane = S_{x} = U_{x}t + \frac{1}{2}a_{x}.t^{2}

       Component along y or perpendicular to  inclined plane = S_{y} = U_{y}t + \frac{1}{2}a_{y}.t^{2}

        And S = \sqrt{S_{x}^{2} + S_{y}^{2} }

   d) Acceleration = a 

    Component along x or along inclined plane= a_{x} = -gsin\beta

    Component along y or perpendicular to  inclined plane = a_{y} = -gcos\beta

    So a=-g

For maximum range \sin \left ( 2\alpha -\theta \right )should be maximum

So for \left ( 2\alpha -\theta \right )= \frac{x}{2}

R= \frac{u^{2}}{g\cos ^{2}\theta }\left [ 1-\sin \theta \right ]

R= \frac{u^{2}}{g\left ( 1-\sin ^{2}\theta \right ) }\left [ 1-\sin \theta \right ]

R= \frac{u^{2}}{g\left ( 1+\sin ^{2}\theta \right ) }

Posted by

shivangi.bhatnagar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE