Get Answers to all your Questions

header-bg qa

A projectile is projected with velocity  of 25 \mathrm{~m} / \mathrm{s} at an angle of with the horizontal. After \mathrm{t} seconds its inclination with horizontal becomes zero. If \mathrm{R} represents horizontal range of the projectile, the valae of \mathrm{\theta } will be :
\mathrm{\left [ use\: g= 10\, m/s^{2} \right ]}

Option: 1

\mathrm{\frac{1}{2} \sin ^{-1} \left [ \frac{5t^{2}}{4R} \right ]}


Option: 2

\mathrm{\frac{1}{2} \sin ^{-1} \left [ \frac{4R}{5t^{2}} \right ]}


Option: 3

\mathrm{\tan ^{-1}\left[\frac{4 t^{2}}{5R}\right]}


Option: 4

\mathrm{\cot ^{-1}\left[\frac{R}{20\, t^{2}}\right]}


Answers (1)

best_answer


The time at which the inclination of the projectile becomes zero with the horizontal is time of ascent (half of time of flight)

\mathrm{t= \frac{T}{2}= \frac{u\sin \theta }{g}}
\mathrm{R= \frac{u^{2}\times 2\sin \theta \cos \theta }{g}}
\mathrm{\frac{R}{t^{2}}= \frac{u^{2}\times 2\sin \theta \cos \theta }{\frac{u^{2}\sin^{2}\theta }{g}}}
\mathrm{\frac{R}{t^{2}}= 20\times \cot \theta }
\mathrm{\cot \theta = \frac{R}{20\, t^{2}}}

\mathrm{ \theta =\cot^{-1}\left ( \frac{R}{20\, t^{2}} \right )}

The correct option is (4)

Posted by

Divya Prakash Singh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE