Get Answers to all your Questions

header-bg qa

A raindrop with radius R = 0.2mm falls from a cloud at a height h = 2000 m above the ground. Assume that the drop is spherical throughout its fall and the force of buoyance may be neglected, then the terminal speed attained by the raindrop is : [Density of waterf_{w} = 1000 kg \: m^{3} and Density of air f_{a} = 1.2 kg m^{3} , g = 10 m/s^{2}Coefficient of viscosity of air = 1.8 \times 10^{-5} Nsm^{-2}]
Option: 1 250.6\: ms^{-1}      
Option: 2 43.56\: ms^{-1}
Option: 3 4.94\: ms^{-1}
Option: 4 14.4\: ms^{-1}

Answers (1)

best_answer

F \rightarrow Frictional\: \: drag \: \: face \: \: (stokes\: \: law)

B \rightarrow Buo yancy\: \: force\: \: B \simeq 0 ( neglected)

At\: terminal \: \: velocity,

\begin{aligned} &F=m g\\ \end{aligned}

\begin{aligned} &6 \pi \eta R{V_T}=m g=\left(\rho _{w}\right) \times \frac{4}{3} \pi R^{3} g\\ \end{aligned}

V_{T}=\frac{\rho _{w\times 4\pi R^{3}}g}{3\times 6\pi \eta R}

\begin{aligned} &V=\frac{45 \rho w}{18 \eta } R^{2} g\\ \end{aligned}

\begin{aligned} &V_{T}=\frac{2}{9} \times \frac{10^{3} \times\left(2 \times 10^{-4}\right)^{2} \times 10}{1.8 \times 10^{-5}}\\ \end{aligned}

\begin{aligned} &h=\frac{8 \times 10^{-4} \times 10^{5}}{9 \times 1.8}=\frac{40}{8.1}\\ \end{aligned}

\begin{aligned} &V_{T}=4.94 \mathrm{~m} / \mathrm{s} \end{aligned}

The correct option is (3)

Posted by

vishal kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE