Get Answers to all your Questions

header-bg qa

A satellite of mass m is launched vertically upwards with an initial speed u from the surface of the earth. After it reaches a height of R(R=radius of r=earth), it ejects a rocket of mass \frac{m}{10} so that subsequently the satellite moves in a circular orbit. The kinetic energy of the rocket is (G is the gravitational constant; M is the mass of the earth):
Option: 1 \frac{3m}{8}\left ( u+\sqrt{\frac{5GM}{6R}} \right )^{2}
 

Option: 2  5m\left ( u^{2}-\frac{119}{200}\: \frac{GM}{R} \right )  


Option: 3  \frac{m}{20}\left ( u^{2}+\frac{113}{200}\: \frac{GM}{R} \right )


Option: 4 \frac{m}{20}\left ( u-\sqrt{\frac{2GM}{3R}} \right )^{2}
 

Answers (1)

best_answer

 

 

Gravitational Potential Energy (U) -

It is the amount of work done in bringing a body from  \infty  to that point against gravitational force.

  • It is Scalar quantity

  • SI Unit: Joule

  • Dimension : \left[ ML^{2}T^{-2}\right ]

  • Gravitational Potential energy at a point

             If the point mass M is producing the field

             

         Then gravitational force on test mass m at a distance r from M is given by F=\frac{GMm}{r^2}

        And the amount of work done in bringing a body from \infty to r

                   = W=\int_{\infty}^{r}\frac{GMm}{x^2}dx=-\frac{GMm}{r}

         And this is equal to gravitational potential energy

               So U=-\frac{GMm}{r}

U \rightarrow gravitational potential energy 

M \rightarrow Mass of source-body

m \rightarrow mass of test body

r \rightarrow distance between two

Note- U is always negative in the gravitational field because Force is attractive in nature.

  Means As the distance r increases U becomes less negative 

I.e U will increase as r increases

And for r=\infty, U=o which is maximum

  • Gravitational Potential energy of discrete distribution of masses

  U=-G\left [ \frac{m_{1}m_{2}}{r_{12}}+\frac{m_{2}m_{3}}{r_{23}}+\cdot \cdot \cdot \right ]

U \rightarrow Net Gravitational Potential Energy

r_{12},r_{23}\rightarrow The distance of masses from each other

 

  • Change of potential energy

if a body of mass m is moved from  r_{1 } to r_{2 }

Then Change of potential energy is given as

 \Delta U=GMm\left [ \frac{1}{r_{1}}-\frac{1}{r_{2}} \right ]

 

\Delta U \rightarrow change of energy

r_{1},r_{2}\rightarrow distances

If r_{1}>r_{2} then the change in potential energy of the body will be negative.

              I.e To decrease potential energy of a body we have to bring that body closer to the earth.

  • The relation between Potential and Potential energy

As U=\frac{-GMm}{r}=m\left [ \frac{-GM}{r} \right ]

But V=-\frac{GM}{r}

So U=mV

Where V\rightarrow Potential

U\rightarrow Potential energy

r\rightarrow distance

 

  • Gravitational Potential Energy at the center of the earth relative to infinity

           {U_{centre}=mV_{centre}}\\ {V_{centre}\rightarrow Potential\: at\: centre}

           U=m\left ( -\frac{3}{2}\frac{GM}{R} \right )

               m \rightarrow mass of body

            M \rightarrow Mass of earth

 

  • The gravitational potential energy at height 'h' from the earth's surface

U_{h}=-\frac{GMm}{R+h}

Using GM=gR^2

U_{h}=-\frac{gR^{2}m}{R+h}

 

U_{h}=-\frac{mgR}{1+\frac{h}{R}}

 

U_{h}\rightarrow The potential energy at the height h

R\rightarrow Radius of earth

-

 

 

Before the rocket rejection

 

Apply energy conservation

\frac{1}{2}mu^2-\frac{GMm}{R}= \frac{1}{2}mV^2-\frac{GMm}{2R}\\\Rightarrow \frac{1}{2}mV^2=\frac{1}{2}mu^2--\frac{GMm}{2R}\\ \Rightarrow V=\sqrt{u^2-\frac{GM}{R}}

After the rocket rejection

Apply momentum conservation 

Along y-axis

mV=\frac{m}{10}V_3\Rightarrow V_3=10V

Along x-axis

\frac{9m}{10}V_1=\frac{m}{10}V_2\Rightarrow V_2=9V_1

And since V_1=V_{orbital}=\sqrt{\frac{GM}{2R}}

So Kinetic energy of the rocket

K=\frac{1}{2}*\frac{m}{10}*(V_2^2+V_3^2)=\frac{1}{2}*\frac{m}{10}*(\frac{81GM}{2R}+100(u^2-\frac{GM}{R}))\\ K=5m(u^2-\frac{119}{200}*\frac{GM}{R})

So option (3) is correct.

Posted by

Ritika Jonwal

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE