Get Answers to all your Questions

header-bg qa

A tower \mathrm{PQ} stands on a horizontal ground with base \mathrm{Q} on the ground. The point Rdivides the tower in two parts such that \mathrm{QR=15m}. If from a point \mathrm{A} on the ground the angle of elevation of \mathrm{R} is \mathrm{60^{\circ}} and the part \mathrm{PR} of the tower subtends an angle of \mathrm{15^{\circ}} at \mathrm{A}, then the height of the tower is :

Option: 1

5(2 \sqrt{3}+3) \mathrm{m} \\


Option: 2

5(\sqrt{3}+3) \mathrm{m}


Option: 3

10(\sqrt{3}+1) \mathrm{m} \\


Option: 4

10(2 \sqrt{3}+1) \mathrm{m}


Answers (1)

best_answer

\mathrm{\frac{15}{A Q}=\tan 60^{\circ}}\\                ........(1)

\mathrm{\frac{15+x}{A Q}=\tan 75^{\circ}}\\              ..........(2)

\mathrm{\frac{(1)}{\text { (2) }} \Rightarrow x^{1}=10 \sqrt{3}}

\mathrm{so, P Q=5(2 \sqrt{3}+3) m}

Hence correct option is 1

Posted by

Divya Prakash Singh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE