Get Answers to all your Questions

header-bg qa

An equilateral triangle \mathrm{SAB} is inscribed in the parabola \mathrm{\mathrm{y}^2=4 \mathrm{ax}} having it's focus at \mathrm{' \mathrm{S}'}. If chord \mathrm{\mathrm{AB}} lies towards the left of \mathrm{S}, then side length of this triangle is
 

Option: 1

3 \mathrm{a}(2-\sqrt{3})


 


Option: 2

4 \mathrm{a}(2-\sqrt{3})
 


Option: 3

2(2-\sqrt{3})
 


Option: 4

8 \mathrm{a}(2-\sqrt{3})


Answers (1)

best_answer

Let \mathrm{A} \equiv\left(\mathrm{at}_1^2, 2 \mathrm{at}_1\right), \mathrm{B} \equiv\left(\mathrm{at}_2^2,-2 \mathrm{at}_1\right).We have \mathrm{ \mathrm{m}_{\mathrm{AS}}=\tan \left(\frac{\pi}{6}\right) \Rightarrow \frac{2 \mathrm{at}_1}{\mathrm{at}_1^2-\mathrm{a}}=-\frac{1}{\sqrt{3}}}

\mathrm{ \Rightarrow \quad \mathrm{t}_1{ }^2+2 \sqrt{3} \mathrm{t}_1=-1=0 \Rightarrow \mathrm{t}_1=-\sqrt{3} \pm 2 }

Clearly \mathrm{ \mathrm{t}_1=-\sqrt{3}-2 } is rejected. Thus \mathrm{ \mathrm{t}_1=(2-\sqrt{3}) }. Hence \mathrm{ \mathrm{AB}=4 \mathrm{at}_1=4 \mathrm{a}(2-\sqrt{3}) }

Hence option 2 is correct.

 

 

Posted by

Gautam harsolia

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE