Get Answers to all your Questions

header-bg qa

An ideal gas undergoes a reversible isobaric expansion at a constant pressure of \mathrm{2.2 \mathrm{~atm}.} The gas absorbs \mathrm{1400 \mathrm{~J}} of heat and its temperature increases by \mathrm{40^{\circ} \mathrm{C}}. Calculate the change in heat enthalpy of the gas. Given the heat capacity at constant pressure \mathrm{\left(C_p\right)} for the gas is \mathrm{ 24 \mathrm{~J} / \mathrm{K}.}
 

Option: 1

1000 \mathrm{~J}


 


Option: 2

960 \mathrm{~J}
 


Option: 3

1000 \mathrm{~J}
 


Option: 4

1200 \mathrm{~J}


Answers (1)

Given data:

Heat absorbed \mathrm{(Q)=1400 \mathrm{~J}}

Change in temperature \mathrm{(\Delta T)=40^{\circ} \mathrm{C}=40 \mathrm{~K}}

Heat capacity at constant pressure \mathrm{\left(C_p\right)=24 \mathrm{~J} / \mathrm{K}}

The change in heat enthalpy \mathrm{(\Delta H)} for an isobaric process is given by:

\mathrm{ \Delta H=C_p \cdot \Delta T=(24 \mathrm{~J} / \mathrm{K}) \cdot(40 \mathrm{~K})=960 \mathrm{~J} }

Therefore, the change in heat enthalpy of the gas is \mathrm{ 960 \mathrm{~J}. }

So, the correct option is 2.

Posted by

Sumit Saini

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE