If p, q, r, are real, p\neq q, then the roots of the equation (p-q)x^{2}-5(p+q)x-2(p-q)=0  are

  • Option 1)

    Real and equal

  • Option 2)

    Non real

  • Option 3)

    Real and unequal

  • Option 4)

    None of these

 

Answers (1)
P Prateek Shrivastava

As we learnt in 

Condition for Real and distinct roots of Quadratic Equation -

D= b^{2}-4ac> 0

- wherein

ax^{2}+bx+c= 0

is the quadratic equation

 

 \\( p-q) \right )x^{2}-5\left ( p+q \right )x-2\left ( p-q \right )=0\ \\\\\*\left\[ 5\left ( p+q \right ) \right ]^{2}-4\times \left ( -2 \right )\left ( p-q \right )^{2}\\*\\=25\left ( p+q \right )^{2}+8\left ( p-q \right )^{2}> 0


Option 1)

Real and equal

Incorrect

Option 2)

Non real

Incorrect

Option 3)

Real and unequal

Correct

Option 4)

None of these

Incorrect

Exams
Articles
Questions