An earth’s satellite of mass m revolves in a circular orbit at a height h from the surface g is acceleration due to gravity at the surface of the earth. The velocity of the satellite in the orbit is given by

  • Option 1)


  • Option 2)


  • Option 3)


  • Option 4)

    \sqrt{\left (\frac{ gR^{2}}{R+h} \right )}


Answers (1)

As we learnt in 

Variation in 'g' with height -

g'=g\left ( \frac{R}{R+h} \right )^{2}

g'\rightarrow gravity at height h from surface of earth.

R\rightarrow Radius of earth

h\rightarrow height above surface

- wherein

g'\alpha\, \frac{1}{r^{2}}



At height h, effect of gravity is {g}'=\frac{g}{\left ( 1+\frac{h}{R} \right )^{2}}

\Rightarrow m{g}'=\frac{mv^{2}}{R+h}

\Rightarrow \frac{g}{\left ( 1+\frac{h}{R} \right )^{2}}=\frac{v^{2}}{R+h}\ \: \: or\ \: \: \frac{R^{2}g}{R+h}=v^{2}

\Rightarrow v=\sqrt{\frac{gR^{2}}{R+h}}

Option 1)


This is incorrect option

Option 2)


This is incorrect option

Option 3)


This is incorrect option

Option 4)

\sqrt{\left (\frac{ gR^{2}}{R+h} \right )}

This is correct option

Preparation Products

Knockout BITSAT 2021

It is an exhaustive preparation module made exclusively for cracking BITSAT..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout BITSAT-JEE Main 2021

An exhaustive E-learning program for the complete preparation of JEE Main and Bitsat.

₹ 27999/- ₹ 16999/-
Buy Now