Get Answers to all your Questions

header-bg qa

 If   p and

Q=PAPT, then PT Q2015 P is :

 

  • Option 1)

  • Option 2)

    \begin{bmatrix} 2015 &1 \\ 0& 1 \end{bmatrix}

  • Option 3)

  • Option 4)

 

Answers (2)

best_answer

As we have learned

Transpose of a Matrix -

The matrix obtained from any given matrix A, by interchanging its rows and columns.

- wherein

 

 

Multiplication of matrices -

-

 

 P^TQ^{2015}P

= P^TQ\cdot Q\cdot Q\cdot Q\cdot Q........QP

                   2015 times

Now , if P= \begin{bmatrix} \sqrt3/2 &1/2 \\ -1/2 & \sqrt3/2 \end{bmatrix}

so , P^TP= \begin{bmatrix} \sqrt3/2 &-1/2 \\ 1/2 & \sqrt3/2 \end{bmatrix}\begin{bmatrix} \sqrt3/2 &1/2 \\ -1/2 & \sqrt3/2 \end{bmatrix}

\begin{bmatrix} 1 & 0\\ 0&1 \end{bmatrix}= I

\rightarrow P^TQ^{2015}= A^{2015}

= \begin{bmatrix} 1 &1 \\ 0& 1 \end{bmatrix}\cdot \begin{bmatrix} 1 &1 \\ 0& 1 \end{bmatrix}.....\begin{bmatrix} 1 &1 \\ 0& 1 \end{bmatrix}

= \begin{bmatrix} 2 &1 \\ 0& 1 \end{bmatrix}........= \begin{bmatrix} 2015 &1 \\ 0& 1 \end{bmatrix}

 

 

 


Option 1)

Option 2)

\begin{bmatrix} 2015 &1 \\ 0& 1 \end{bmatrix}

Option 3)

Option 4)

Posted by

gaurav

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE