Get Answers to all your Questions

header-bg qa

A solid ball of radius R has a charge density \rho given by \rho=\rho _{0} (1-r/R) for 0 ≤ r ≤ R. The electric field outside the ball is :

  • Option 1)

    \frac{\rho _{0}R^{3}}{\epsilon _{0}r^{2}}

  • Option 2)

    \frac{\rho _{0}R^{3}}{12\epsilon _{0}r^{2}}

  • Option 3)

    \frac{4\rho _{0}R^{3}}{3\epsilon _{0}r^{2}}

  • Option 4)

    \frac{3\rho _{0}R^{3}}{4\epsilon _{0}r^{2}}

 

Answers (2)

best_answer

As we learnt

If P lies outside -

E_{out}=\frac{1}{4\pi \epsilon _{0}}\frac{Q}{r^{2}}         V_{out}=\frac{1}{4\pi \epsilon _{0}}\frac{Q}{r}

E_{out}=\frac{\rho R^{3}}{3 \epsilon _{0}r^{2}}             V_{out}=\frac{\rho R^{3}}{3 \epsilon _{0}r}

-

 

  Total charge on sphere:

q=\int_{0}^{R}\rho dv=\int_{0}^{R}\rho_{0}\left ( 1- \frac{r}{R}\right ).4\Pi r^{2}dr

q=\rho_{0}.4\Pi \left [ \int_{0}^{R}r^{2}dr-\int_{0}^{R}{\frac{r^{3}}{R}}dr \right ]

q=\rho_{0}.4\Pi\left ( \frac{R^{3}}{3}-\frac{R^{3}}{4} \right )=\rho_{0}\left ( 4\Pi \right )\frac{R^{3}}{12}

q=\frac{\rho_{0}.\Pi R^{3}}{3}

E=\frac{1}{4\pi \epsilon _{0}}\frac{q}{r^{2}}=\frac{1}{4\pi \epsilon _{0}}.\frac{\rho _{0}\pi r^{3}}{3.r^{2}}

E=\frac{\rho _{0}R^{3}}{12\epsilon _{0}r^{2}}

 


Option 1)

\frac{\rho _{0}R^{3}}{\epsilon _{0}r^{2}}

Option 2)

\frac{\rho _{0}R^{3}}{12\epsilon _{0}r^{2}}

Option 3)

\frac{4\rho _{0}R^{3}}{3\epsilon _{0}r^{2}}

Option 4)

\frac{3\rho _{0}R^{3}}{4\epsilon _{0}r^{2}}

Posted by

divya.saini

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE