Get Answers to all your Questions

header-bg qa

Right hand derivative of f(x)= \sin|x| + |x| at x=0 equals

  • Option 1)

    -1

  • Option 2)

    0

  • Option 3)

    1

  • Option 4)

    2

 

Answers (1)

best_answer

 As we have learned

Right Hand Derivatives -

Right hand derivative of  f(x) at  x=x_{\circ }  is given by  

f'(x_{\circ })=\lim_{h\rightarrow 0}\:\:\frac{f(x_{\circ }+h)-f(x_{\circ })}{(x_{\circ }+h)-(x_{\circ })}

-

 

RHD = \lim_{h\rightarrow 0^{+}}\frac{f(0-h)-f(0)}{(0-h)-0}=\lim_{h\rightarrow 0^{+}}\frac{\sin |h|+|h|-0}{h }

=\lim_{h\rightarrow 0^{+}}\frac{\sin h+h}{h }=\lim_{h\rightarrow 0^{+}}\frac{\sin h}{h + \lim_{h\rightarrow 0^{+}}}\frac{h}{h}

=1+1=2 

 

 

 

 

 


Option 1)

-1

Option 2)

0

Option 3)

1

Option 4)

2

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE