Get Answers to all your Questions

header-bg qa

Estimate the temperature range for which the following standard reaction is product-favored:

\mathrm{ 2 \mathrm{H}_2(g)+\mathrm{O}_2(g) \rightleftharpoons 2 \mathrm{H}_2 \mathrm{O}(g) }

Given that the standard enthalpy change \mathrm{ \left(\Delta H^{\circ}\right) } for the reaction is \mathrm{-483.6 \: \mathrm{kJ} / \mathrm{mol}} and the standard entropy change \mathrm{\left(\Delta S^{\circ}\right)\: is \: 140.3 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K}).}
 

Option: 1

Product favoured above -3448 \mathrm{~K}


 


Option: 2

Not product favoured above -3448 \mathrm{~K}
 


Option: 3

Product favoured above -3400 \mathrm{~K}
 


Option: 4

Not Product favoured 2300 \mathrm{~K}


Answers (1)

best_answer

Step 1: Calculate the standard Gibbs free energy change \mathrm{\left(\Delta G^{\circ}\right)}using the equation:
\mathrm{ \Delta G^{\circ}=\Delta H^{\circ}-T \cdot \Delta S^{\circ} }

Step 2: Determine the temperature range for which the reaction is productfavored. In this case, a reaction is product-favored when \mathrm{ \Delta G^{\circ} } is negative.

Step 3: Set \mathrm{ \Delta G^{\circ} } to be less than zero to find the temperature range:

\mathrm{ \Delta G^{\circ}<0 \Rightarrow \Delta H^{\circ}-T \cdot \Delta S^{\circ}<0 }

Step 4: Solve for the temperature \mathrm{ (T) } to find the range where the reaction is product-favored.
\mathrm{ T>\frac{\Delta H^{\circ}}{\Delta S^{\circ}} }

Step 5: Substitute the given values and calculate the temperature range.
\mathrm{ T>\frac{-483.6 \times 10^3 \mathrm{~J} / \mathrm{mol}}{140.3 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})} }

Calculating the numerical value of the temperature range:

\mathrm{ T>-3447.76 \mathrm{~K} }

Since temperature cannot be negative, the reaction is product-favored for all temperatures above \mathrm{ -3447.76 \mathrm{~K}. }

So, Correct option is 1

Posted by

SANGALDEEP SINGH

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE