Get Answers to all your Questions

header-bg qa

Find the value of \left(\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}+\cdots+\mathrm{C}_{n}\right)^{3} 

Option: 1

2^{3n} -1


Option: 2

1+\;^{3 n} \mathrm{C}_{1}+^{3 n} \mathrm{C}_{2}+\cdots+^{3 n} \mathrm{C}_{3 n}


Option: 3

2^{3n} +1


Option: 4

None of the above


Answers (1)

best_answer

Series Involving Binomial Coefficients

Sum of Coefficient 

C_0 + C_1 + C_2 + .........+C_n = 2^n

-

Now,

\left(\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}+\cdots+\mathrm{C}_{n}\right)^3=2^{3n}

And

\;1+^{3 n} \mathrm{C}_{1}+^{3 n} \mathrm{C}_{2}+\cdots+^{3 n} \mathrm{C}_{3 n}

=\;^{3n}\mathrm{C}_0+^{3 n} \mathrm{C}_{1}+^{3 n} \mathrm{C}_{2}+\cdots+^{3 n} \mathrm{C}_{3 n} = 2^{3n}

Hence, Option B is correct.

Posted by

sudhir.kumar

View full answer