Get Answers to all your Questions

header-bg qa

For all real p, the line \mathrm{2 p x+y \sqrt{1-p^2}=1} touches a fixed ellipse. Find the eccentricity of this ellipse.

Option: 1

\frac{1}{2}


Option: 2

\frac{1}{\sqrt{2}}


Option: 3

\frac{\sqrt{3}}{2}


Option: 4

\sqrt{\frac{2}{3}}


Answers (1)

Let the ellipse be \mathrm{ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1. } The line \mathrm{y=m x \pm \sqrt{a^2 m^2+b^2}} touches this ellipse for all m.

Hence it is identical with \mathrm{y=-\frac{2 p x}{\sqrt{1-p^2}}+\frac{1}{\sqrt{1-p^2}}.}

\mathrm{\text { Hence } m=-\frac{2 p}{\sqrt{1-p^2}} \text { and } a^2 m^2+b^2=\frac{1}{1-p^2}}

\mathrm{\Rightarrow a^2 \cdot \frac{4 p^2}{1-p^2}+b^2=\frac{1}{1-p^2} \quad \Rightarrow p^2\left(4 a^2-b^2\right)+b^2-1=0 \text {. }}

This equation is true for all real p if \mathrm{b^2=1} and \mathrm{4 a^2=b^2}.

which is true for all p                     \mathrm{\Rightarrow \mathrm{b}^2=1} and \mathrm{4 \mathrm{a}^2=\mathrm{b}^2=1}

\mathrm{\Rightarrow b^2=1} and \mathrm{a^2=1 / 4}

Hence the ellipse is  \mathrm{\frac{x^2}{1 / 4}+\frac{y^2}{1}=1}

If e is its eccentricity, then  \mathrm{\frac{1}{4}=1-e^2}

\mathrm{\Rightarrow e^2=\frac{3}{4} \quad \Rightarrow e=\frac{\sqrt{3}}{2}}

Posted by

Ramraj Saini

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE