Get Answers to all your Questions

header-bg qa

For an object placed at a distance 2.4 \mathrm{~m} from a lens, a sharp focused image is observed on a screen placed at a distance 12 \mathrm{~cm} form the lens. A glass plate of refractive index 1.5 and thickness 1 \mathrm{~cm} is introduced between the lens and screen such that the glass plate plane faces parallel to the screen. By what distance should the object be shifted so that a sharp focused image is observed again on the screen?

Option: 1

0.8\: \mathrm{m}


Option: 2

3.2\: \mathrm{m}


Option: 3

1.2\: \mathrm{m}


Option: 4

5.6\: \mathrm{m}


Answers (1)

\mathrm{u=-2.4\mathrm{~m}=-240 \mathrm{~cm} }

\mathrm{v=+12 \mathrm{~cm} }

\mathrm{\frac{1}{v}-\frac{1}{u}=\frac{1}{f} }

\mathrm{\frac{1}{+12}-\frac{1}{(-240)}=\frac{1}{f} }

\mathrm{-\frac{240}{21}=\frac{80}{7} \mathrm{~cm}}

Normal shift due to glass plate

\mathrm{s =t\left(1-\frac{1}{\mu}\right) }

     \mathrm{= 1 \mathrm{~cm}\left(1-\frac{1}{3 / 2}\right) }

  \mathrm{s=\frac{1}{3} \mathrm{~cm} }

\mathrm{v^{\prime} =v-s=12-\frac{1}{3}=\frac{35}{3} \mathrm{~cm} }

\mathrm{\frac{1}{v^{\prime}}-\frac{1}{u^{\prime}} =\frac{1}{f} }

\mathrm{\frac{1}{+\left(\frac{35}{3}\right)}-\frac{1}{u^{\prime}} =\frac{1}{\frac{80}{7}} }

\mathrm{\frac{1}{u^{\prime}} = \frac{3}{35}-\frac{7}{80}}

      \mathrm{=\frac{24}{280}-\frac{24.5}{280}}

\mathrm{\frac{1}{u'}=\frac{-1}{560}}

\mathrm{|u'|=560\: cm=5.6 \ m}

The object is displaced by=5.6 - 2.4

                                \mathrm{=3.2\: m}

Hence (2) is correct option

Posted by

Ramraj Saini

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE