Get Answers to all your Questions

header-bg qa

For integers n and r, let \binom{n}{r}=\left\{\begin{matrix} ^{n}C_{r} & \text{if} \; \geq r\geq 0\\ 0,& \text{otherwise} \end{matrix}\right. The maximum value of k for which the sum  \sum_{i=0}^{k}\binom{10}{i}\binom{15}{k-i}+\sum_{i=0}^{k+1}\binom{12}{i}\binom{13}{k+1-i} exists, is equal to _____
Option: 1 Not defined
Option: 2 25
Option: 3 26
Option: 4 15

Answers (1)

best_answer

 

\begin{array}{l} \sum_{i=0}^{k}\left(\begin{array}{c} 10 \\ i \end{array}\right)\left(\begin{array}{c} 15 \\ k-i \end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c} 12 \\ i \end{array}\right)\left(\begin{array}{c} 13 \\ k+1-i \end{array}\right) \\\\ { }^{25} C_{k}+{ }^{25} C_{k+1} \\\\ { }^{26} C_{k+1} \end{array}

as { }^{n} C_{r} is defined for all values of n as will as r

so { }^{26} \mathrm{C}_{\mathrm{k}+1} always exists

Now k is unbounded so maximum value is not defined.

Posted by

Suraj Bhandari

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE