Get Answers to all your Questions

header-bg qa

Four particles each of mass m are placed at the verticles of square of side a. What is the potential energy of the system? 

Option: 1

\frac{-\sqrt{2}Gm^{2}}{a}\left ( 2-\frac{1}{\sqrt{2}} \right )

 

 


Option: 2

\frac{-2Gm^{2}}{a}\left ( 2+\frac{1}{\sqrt{2}} \right )


Option: 3

\frac{-\sqrt{2}Gm^{2}}{a}\left ( \sqrt{2}-\frac{1}{\sqrt{2}} \right )


Option: 4

\frac{-\sqrt{2}Gm^{2}}{a}\left ( \sqrt{2}+\frac{1}{\sqrt{2}} \right )


Answers (1)

best_answer

As we learn

Gravitational Potential energy of discrete distribution of masses -

U=-G\left [ \frac{m_{1}m_{2}}{r_{12}}+\frac{m_{2}m_{3}}{r_{23}}+\cdot \cdot \cdot \right ]

U\rightarrow Gravitatinal Potential Energy

r_{12},r_{23}\rightarrow Distance of masses from each other

- wherein

if r=\infty

U becomes Zero (maximum)

 

 P.E. =\frac{-Gm_{1}m_{2}}{r}

Short trick to calculate no of pair

=\frac{n (n-1)}{2}           [n= no of masses]

=\frac{4*3}{2}=6

Pair calculation (1,2), \: \: (1,3),\: \: (1,4),\: \: (2,3),\: \: (2,4),\: \: (3,4)

Distance               a        \sqrt{2}a       a              a            \sqrt{2}a            a

Four pair of distance = a

Two pair of distance =\sqrt{2}a

Hence P.E. of the system =\frac{-4 Gm^{2}}{a}+\frac{-2Gm^{2}}{\sqrt{2}a}

P.E=\frac{-2Gm^{2}}{a}\left [ 2+\frac{1}{\sqrt{2}} \right ]

 

 

Posted by

chirag

View full answer