Get Answers to all your Questions

header-bg qa

If \int_{a}^{b}f(x)dx = F(b) - F(a); then which of the following is NOT true?

  • Option 1)

    a is the lower limit

  • Option 2)

    b is the upper limit

  • Option 3)

    \int_{a}^{b}f(x)dx = \int_{b}^{a} f(x)dx

  • Option 4)

    If F(b) = F(a)\int_{a}^{b}f(x)dx = 0

 

Answers (1)

best_answer

As we have learnt,

 

lower and upper limit -

\int_{a}^{b}f\left ( x \right )dx= \left ( F\left ( x \right ) \right )_{a}^{b}

                = F\left ( b \right )-F\left ( a \right )

 

- wherein

Where a is lower and b is upper limit.

 

 \int_{a}^{b} f(x)dx \neq \int_{b}^{a} f(x)dx

 


Option 1)

a is the lower limit

Option 2)

b is the upper limit

Option 3)

\int_{a}^{b}f(x)dx = \int_{b}^{a} f(x)dx

Option 4)

If F(b) = F(a)\int_{a}^{b}f(x)dx = 0

Posted by

Aadil

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE