Get Answers to all your Questions

header-bg qa

In a class of 60 students, 40 opted for NCC, 30 opted for NSS and 20 opted for both NCC and NSS. If one of these students is selected at random, then the probability that the student selected has opted neither for NCC nor for NSS is : 

  • Option 1)

    \frac{1}{6}

  • Option 2)

    \frac{2}{3}

  • Option 3)

    \frac{1}{3}

  • Option 4)

    \frac{5}{6}

Answers (1)

best_answer

 

Addition Theorem of Probability -

P\left ( A\cup B \right )= P\left ( A \right )+P\left ( B \right )-P\left ( A\cap B \right )

in general:

P\left ( A_{1}\cup A_{2}\cup A_{3}\cdots A_{n} \right )=\sum_{i=1 }^{n}P\left ( A_{i} \right )-\sum_{i< j}^{n}P\left ( A_{i}\cap A_{j} \right )+\sum_{i< j< k}^{n} P\left ( A_{i}\cap A_{j}\cap A_{k} \right )-\cdots -\left ( -1 \right )^{n-1}P\left ( A_{1}\cap A_{2}\cap A_{3}\cdots \cap A_{n} \right )

-

 

A=NCC

B=NSS

n(A)=40\: \: \: \: \: n(B)=30

n.(A\cup B)=n(A)+n(B)-n(A\cap B)\\\\=30+40-20\\\\=50\\\\P=\frac{60-50}{60}=\frac{1}{6}


Option 1)

\frac{1}{6}

Option 2)

\frac{2}{3}

Option 3)

\frac{1}{3}

Option 4)

\frac{5}{6}

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE