Get Answers to all your Questions

header-bg qa

If \cos ^{-1}x-\cos ^{-1}\frac{y}{2}=\alpha , then 4x^{2}-4xy\cos \alpha +y^{2} is equal to

  • Option 1)

    4

  • Option 2)

    2\sin 2\alpha

  • Option 3)

    -4\sin ^{2}\alpha

  • Option 4)

    4\sin ^{2}\alpha

 

Answers (1)

best_answer

As we learnt in 

Formulae of Inverse Trigonometric Functions -

\cos ^{-1}x + \cos ^{-1}y = \cos ^{-1}\left \left ( xy- \sqrt{1-x^{2}}\sqrt{1-y^{2}} \right )

- wherein

x\geqslant 0, y\geqslant 0

 

 \cos ^{-1}x - \cos ^{-1}\frac{y}{2} = \alpha

\Rightarrow \cos ^{-1} \left ( \frac{xy}{2}+\sqrt{1-x^2}\sqrt{1-\frac{y^2}{4}} \right ) = \alpha

\Rightarrow \cos \alpha = \frac{xy}{2} + \sqrt{1-x^2}\sqrt{1-\frac{y^2}{4}}

= \frac{1}{2} \left \{ xy +\sqrt{1-x^2} \sqrt{4-y^2} \right \} ......... \left ( 1 \right )

Squaring, we get

\cos ^2\alpha = \frac{1}{4} \left [ x^{2}y^{2}+(1-x^{2})(4-y^{2})+2xy \sqrt{1-x^{2}}\sqrt{4-y^{2}} \right ]

= \frac{1}{4} \left [ 2x^2y^2-4x^2-y^2+4 \right ] + \frac{xy}{2} \sqrt{1-x^2}\sqrt{4-y^{2}}

\cos ^2\alpha = 1+ \frac{1}{4} \left [ 2x^2y^2-4x^2-y^2 \right ] + \frac{xy}{2}{\sqrt{1-x^2} \sqrt{4-y^2}}

\Rightarrow 1- \cos ^{2}\alpha =\frac{1}{4}\left [ 4x^2+y^2-2x^2y^2 \right ] -\frac{xy}{2}\sqrt{1-x^2}\sqrt{4-y^2}

\Rightarrow 4 \sin^2\alpha = 4x^2+y^2-2x^2y^2-2xy\sqrt{1-x^2}\sqrt{4-y^2} ......\left ( 2 \right )

= 4x^2+y^2-2x^2y^2-2xy\, \, \, \, \, \left [ 2\cos \alpha -xy \right ]

\Rightarrow 4 \sin ^2\alpha =4x^2+y^2-4xy\cos \alpha

 


Option 1)

4

Incorrect

Option 2)

2\sin 2\alpha

Incorrect

Option 3)

-4\sin ^{2}\alpha

Incorrect

Option 4)

4\sin ^{2}\alpha

Correct

Posted by

Aadil

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE