Get Answers to all your Questions

header-bg qa

 Two blocks of the same metal having same mass and at temperature T_{1} and T_{2} respectively , are brough in contact with each other and allowed to attain thermal equilibrium at constant pressure . The change in entropy ,\Delta S for this process is:

  • Option 1)

    2C_{p} In \left ( \frac{T_{1}+T_{2}}{4T_ {1}T_{2} }\right )

  • Option 2)

    C_{p}\: In\: \left [ \frac{\left (T_{1}+T_{2} \right )^{2}}{4T_{1}T_{2}} \right ]

  • Option 3)

    2C_{p}\: In\: \left [ \frac{T_{1}+T_{2}}{2T_{1}T_{2}} \right ]

     

     

  • Option 4)

      2C_{p}\: In\: \left [ \frac{(T_{1}+T_{2})^{\frac{1}{2}}}{T_{1}T_{2}} \right ]

Answers (1)

best_answer

 

Entropy for isobaric process -

\Delta S= n\, C_{p}\ln \frac{T_{f}}{T_{i}}

- wherein

P= constant

dP= 0

As we know

Tfinal= \frac{T_{1}+T_{2}}{2}

Formula \Delta S_{1}= C_{P}\ln \frac{T_{f}}{T_{1}}\, \, ,\Delta S_{2}= C_{P}\ln \frac{T_{f}}{T_{2}}

\Delta S= \Delta S_{1}+\Delta S_{2}

= C_{P\ln }\left ( \frac{T_{f}^{2}}{T_{1}T_{2}} \right )= C_{P\ln }\left [ \frac{\left ( \frac{T_{1}+T_{2}}{2} \right )^{2}}{T_{1}T_{2}}\right ]

= C_{P\ln }\frac{\left ( T_{1} +T_{2}\right )^{2}}{4T_{1}T_{2}}

 

 


Option 1)

2C_{p} In \left ( \frac{T_{1}+T_{2}}{4T_ {1}T_{2} }\right )

Option 2)

C_{p}\: In\: \left [ \frac{\left (T_{1}+T_{2} \right )^{2}}{4T_{1}T_{2}} \right ]

Option 3)

2C_{p}\: In\: \left [ \frac{T_{1}+T_{2}}{2T_{1}T_{2}} \right ]

 

 

Option 4)

  2C_{p}\: In\: \left [ \frac{(T_{1}+T_{2})^{\frac{1}{2}}}{T_{1}T_{2}} \right ]

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE