Get Answers to all your Questions

header-bg qa

If z=\cos \Theta + i \sin \Theta, then:

  • Option 1)

    z^{n}+ \frac{1}{z^{n}}=2 \cos^{n}\Theta

  • Option 2)

    z^{n}+ \frac{1}{z^{n}}=2^{n} \cos{n}\Theta

  • Option 3)

    z^{n}- \frac{1}{z^{n}}=2^{n} i \sin(n\Theta)

  • Option 4)

    z^{n}- \frac{1}{z^{n}}=(2 i )^{n} \sin(n\Theta)

 

Answers (1)

As we learnt in 

Euler's Form of a Complex number -

z=re^{i\theta}

- wherein

r denotes modulus of z and \theta denotes argument of z.

 

 z=cos \theta+isin \theta=e^{i \theta}\\*\\* z^{n}+ \frac{1}{ z^{n}}=e^{in \theta}+e^{-in \theta}\\*\\cosn \theta+isinn \theta+cosn \theta-isin n \theta=2cosn\theta


Option 1)

z^{n}+ \frac{1}{z^{n}}=2 \cos^{n}\Theta

Correct

Option 2)

z^{n}+ \frac{1}{z^{n}}=2^{n} \cos{n}\Theta

Incorrect

Option 3)

z^{n}- \frac{1}{z^{n}}=2^{n} i \sin(n\Theta)

Incorrect

Option 4)

z^{n}- \frac{1}{z^{n}}=(2 i )^{n} \sin(n\Theta)

Incorrect

Posted by

Vakul

View full answer