Get Answers to all your Questions

header-bg qa

Let f(x)< g(x) in the neighbourhood of x= 1, then 

  • Option 1)

    \lim_{x\rightarrow 1}f(x)=\lim_{x\rightarrow 1}g(x)

  • Option 2)

    lim_{x\rightarrow 1}f(x)< \lim_{x\rightarrow 1}g(x)

  • Option 3)

    lim_{x\rightarrow 1}f(x)\leq \lim_{x\rightarrow 1}g(x)

  • Option 4)

    lim_{x\rightarrow 1}f(x)> \lim_{x\rightarrow 1}g(x)

 

Answers (1)

best_answer

As we have learned

Comparision of limits -

If    f(x)\leq g(x)   foreverly 'x'  in the deleted neighbourhood of  'a'  then   \lim_{x\rightarrow a}f(x)\leq \lim_{x\rightarrow a}g(x)    

-

 

As per the defination if f(x)\leq g(x) in neighbourhood od x=a , then \lim_{x\rightarrow a}f(x)\leq \lim_{x\rightarrow a}g(x) 

 

 

 

 

 


Option 1)

\lim_{x\rightarrow 1}f(x)=\lim_{x\rightarrow 1}g(x)

Option 2)

lim_{x\rightarrow 1}f(x)< \lim_{x\rightarrow 1}g(x)

Option 3)

lim_{x\rightarrow 1}f(x)\leq \lim_{x\rightarrow 1}g(x)

Option 4)

lim_{x\rightarrow 1}f(x)> \lim_{x\rightarrow 1}g(x)

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE