Get Answers to all your Questions

header-bg qa

A transparent solid cylindrical rod has a refractive index of \frac{2}{\sqrt{3}} It is surrounded by air. A light ray is incident at the mid-point of one end of the rod as shown in the figure.

The incident angle \Theta for which the light ray grazes along the wall of the rod is

  • Option 1)

    \sin ^{-1}\left ( \frac{1}{2} \right )

  • Option 2)

    \sin ^{-1}\left ( \frac{\sqrt{3}}{2} \right )

  • Option 3)

    \sin ^{-1}\left ( \frac{2}{\sqrt{3}} \right )

  • Option 4)

    \sin ^{-1}\left ( \frac{1}{\sqrt{3}} \right )

 

Answers (1)

best_answer

As we learnt in

Relation between angle of incidence and angle of refaction -

\mu _{1}\sin i= \mu _{2}\sin r
 

- wherein

\mu _{1}= refractive index of medium of incidence.

\mu _{2}=  refractive index of medium where rays is refracted.

i= angle of incidence.

r= angle of refraction.

 

 Applying Snell's law at Q

\eta=\frac{sin90^{o}}{sin(90-\alpha)}=\frac{1}{cos\alpha}

cos\alpha=\frac{1}{n}

sin\alpha=\sqrt{1-cos^{2}\alpha}=\sqrt{1-\frac{1}{n^{2}}}=\sqrt{\frac{n^{2}-1}{n^{2}}}                                (i)

Snell's law at P

\eta=\frac{sin\theta}{sin\alpha}=sin\theta=nsin\alpha=\sqrt{n^{2}-1}

sin\theta=\sqrt{\left ( \frac{2}{\sqrt{3}} \right )^{2}-1}=\sqrt{\frac{4}{3}-1}=\frac{1}{\sqrt{3}}

\theta=sin^{-1}\left(\frac{1}{\sqrt{3}} \right )

Correct option is 4.

 


Option 1)

\sin ^{-1}\left ( \frac{1}{2} \right )

This is an incorrect option.

Option 2)

\sin ^{-1}\left ( \frac{\sqrt{3}}{2} \right )

This is an incorrect option.

Option 3)

\sin ^{-1}\left ( \frac{2}{\sqrt{3}} \right )

This is an incorrect option.

Option 4)

\sin ^{-1}\left ( \frac{1}{\sqrt{3}} \right )

This is the correct option.

Posted by

prateek

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE