Get Answers to all your Questions

header-bg qa

The length of the chord of the parabola x^2 = 4y having the equation x - \sqrt2y + 4\sqrt2 =0 is:

  • Option 1)

    6\sqrt3

  • Option 2)

    3\sqrt2

  • Option 3)

    8\sqrt2

  • Option 4)

    2\sqrt{11}

Answers (1)

best_answer

 

Standard equation of parabola -

x^{2}=4ay

- wherein

Equation of parabola x^{2}=4ay  and chord  x-\sqrt2 y+4\sqrt2=0

Solve these two equations 

x^{2}=4(\frac{x+4\sqrt2}{\sqrt2})

\sqrt2x^{2}=4x+16\sqrt2

x_{1}+x_{2}=2\sqrt2\: \: ;\: \: x_{1}x_{2}=-16

Similarly,

(\sqrt2y-4\sqrt2)^{2}=4y

=>2y^{2}-20y+32=0

y_{1}+y_{2}=10\: ;\: y_{1}y_{2}=16

Length of chord = \sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}

                         =\sqrt{(2\sqrt2)^{2}+64+(10)^{2}-4(16)}

                        = \sqrt{108}

                       = 6\sqrt3


Option 1)

6\sqrt3

Option 2)

3\sqrt2

Option 3)

8\sqrt2

Option 4)

2\sqrt{11}

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE