Get Answers to all your Questions

header-bg qa

A satellite of mass m is circulating around the earth with constant angular velocity. If radius of the orbit is R0 and mass of the earth M, the angular momentum about the centre of the earth is

  • Option 1)

    M\sqrt{\left ( GmRo \right )}

  • Option 2)

    M\sqrt{\left ( \frac{Gm}{Ro }\right )}

  • Option 3)

    m\sqrt{\left ( \frac{GM}{Ro }\right )}

  • Option 4)

    m\sqrt{\left ( GMRo\right )}

 

Answers (1)

best_answer

As we learnt in 

Angular momentum of satellite -

L=mvr

L=\sqrt{m^{2}GMr}

L= Angular momentum

m\rightarrow mass of satellite

- wherein

v depends on both the masses , mass of centre of body and mass of planet as well as radius of earth.

 

 

Centripetal force =m\omega ^{2}R_{o}

m\omega ^{2}R_{o}=\frac{GmM}{R_{o}^{2}}

\Rightarrow \omega ^{2}=\frac{GM}{R_{o}^{3}}\ \: \: \: \: .........(1)

\therefore Angular momentum =m\omega R_{o}^{2}

=m.\sqrt{\frac{GM}{R_{o}^{3}}}.R_{o}^{2} = m\sqrt{GMR_{o}}

 


Option 1)

M\sqrt{\left ( GmRo \right )}

This is incorrect option

Option 2)

M\sqrt{\left ( \frac{Gm}{Ro }\right )}

This is incorrect option

Option 3)

m\sqrt{\left ( \frac{GM}{Ro }\right )}

This is incorrect option

Option 4)

m\sqrt{\left ( GMRo\right )}

This is correct option

Posted by

Aadil

View full answer