Get Answers to all your Questions

header-bg qa

If f'(x)=x^{3}  and \int f'(x)=F(x),   Given F(2)= -5 .Find 4F(x)

  • Option 1)

    x^{4}+9

  • Option 2)

    x^{4}-9

  • Option 3)

    x^{4}-36

  • Option 4)

    x^{4}-4

 

Answers (1)

best_answer

As we have learned

Rule for integration -

Integration of differential of a function is the function itself .

\int f{}'\left ( x \right )dx=f\left ( x \right )+c

 

- wherein

where    f{}'\left ( x \right )=\frac{\mathrm{d} }{\mathrm{d} x}\left \{ f(x) \right \}   

 

 

F(x)= \int x^{3}dx= \frac{x^{4}}{4}+C

F(2)= 2^{4}/4+ C\Rightarrow =-5

4+ C = -5\Rightarrow C= -5-4=-9


Option 1)

x^{4}+9

Option 2)

x^{4}-9

Option 3)

x^{4}-36

Option 4)

x^{4}-4

Posted by

Aadil

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE