Get Answers to all your Questions

header-bg qa

If f'(x) = g(x) and g'(x) = h(x). Then the value of integral  \int h(x)\;dx is?

  • Option 1)

    g'(x ) + c

  • Option 2)

    g(x ) + c

  • Option 3)

    f(x ) + c

  • Option 4)

    None of these.

 

Answers (1)

best_answer

As we have learnt,

 

Indefinite integration -

It is inverse process of differentation.

\frac{d}{dx}\left \{ F(x) \right \}= f(x)

\therefore \int f(x)dx= F\left ( x \right )+C

 

- wherein

Where

\frac{d}{dx}F\left ( x \right ) is differential of F(x) w.r.t  x

 

 Since, g'(x) = h(x)

\int h(x)dx = \int g'(x)dx = g(x) + c

 


Option 1)

g'(x ) + c

Option 2)

g(x ) + c

Option 3)

f(x ) + c

Option 4)

None of these.

Posted by

gaurav

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE