Get Answers to all your Questions

header-bg qa

 Let p(x) be a quadratic polynomial such that p(0)=1.  If p(x) leaves remainder 4 when divided by x−1 and it leaves remainder 6 when divided by x+1; then :

  • Option 1)

     p(2)=11

  • Option 2)

    p(2)=19

  • Option 3)

    p(−2)=19

  • Option 4)

    p(−2)=11

     

 

Answers (2)

best_answer

As we have learned

Quadratic Expression -

f\left ( x \right )= ax^{2}+bx+c

- wherein

a\neq 0

a,b,c\in R,\: \:

 

 

Factor Theorem -

Any polynomial can be written in terms of product of its factors.

- wherein

If P\left ( x \right )= 0  has roots  \alpha _{1},\alpha _{2},\cdots \alpha _{n}  and  P\left ( x \right )  has leading coefficient 'a' then then P\left ( x \right )= a\left ( x-\alpha _{1} \right )\left ( x-\alpha _{2} \right )\cdots \left ( x-\alpha _{n} \right )  

 

 p(x)= ax^2+bx+c

p(0)=C = 1

p(x)= ax^2 +bx +1

p(1)= a+b+1= 4

p(-1)= a-b+1= 6

2(a+1)= 10

\Rightarrow a= 4

and  

\Rightarrow b= -1

p(x) = 4x^2-x+1

p(-z) = 19

 

 

 

 

 

 

 

 

 

 


Option 1)

 p(2)=11

Option 2)

p(2)=19

Option 3)

p(−2)=19

Option 4)

p(−2)=11

 

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE